Abstract
To improve traditional cancer therapies, we synthesized polylactide (PLA) spheres coencapsulating magnetic nanoparticles (MNPs, Fe3O4) and an anticancer drug (doxorubicin, DOX). The synthesis process involves the preparation of Fe3O4 NPs by a coprecipitation method and then PLA/DOX/Fe3O4 spheres using the solvent evaporation (oil-in-water) technique. The Fe3O4 NPs were coated with oleic acid to improve their hydrophobicity and biocompatibility for medical applications. The structure, morphology and properties of the MNPs and PLA/DOX/Fe3O4 spheres were studied using various techniques, such as FTIR, SEM, TEM, TGA, VSM, UV-vis spectroscopy, and zeta potential measurements. The in vitro DOX release from the spheres was prolonged, sustained, and pH-dependent and fit a zero-order kinetics model and an anomalous mechanism. Interestingly, the spheres did not show a DOX burst effect, ensuring the minimal exposure of the healthy cells and an increased drug payload at the tumor site. The pronounced biocompatibility of the PLA/DOX/Fe3O4 spheres with HeLa cells was proven by a WST assay. In summary, the synthesized PLA/DOX/Fe3O4 spheres have the potential for magnetic targeting of tumor cells to transform conventional methods.
Original language | English |
---|---|
Pages (from-to) | 22692-22701 |
Number of pages | 10 |
Journal | ACS applied materials & interfaces |
Volume | 7 |
Issue number | 40 |
DOIs | |
Publication status | Published - 14 Oct 2015 |
Keywords
- anticancer drug
- FeO nanoparticles
- in vitro study
- magnetic spheres
- magnetic targeting delivery
- polylactide
ASJC Scopus subject areas
- General Materials Science