TY - JOUR
T1 - Planar in Brooker's mode and twisted in Reichardt's mode
T2 - defying the steric forces in biphenyl types of zwitterionic systems through metameric resonance stabilizations
AU - Sitha, Sanyasi
N1 - Publisher Copyright:
© 2022 The Royal Society of Chemistry.
PY - 2022/4/29
Y1 - 2022/4/29
N2 - To be planar or to be twisted at the bridge junctions in biphenyls or biaryl types of molecular systems depends on two conflicting forces: (1) steric repulsions (destabilizations) and (2) conjugation assisted electron delocalizations (resonance stabilizations). This work reports an unfamiliar kind of behaviour shown by metamers of a zwitterionic biphenyl type of system, where the Reichardt's metamer was found to be in an usual twisted conformation (delicate balance of conflicting forces), but the Brooker's metamer was found to be in a fully planar conformation. Interestingly, at the ωB97xD/aug-cc-pVDZ level, energetically (ΔE) the planar Brooker's metamer was found to be 16.7 kcal mol−1 lower (22.9 kcal mol−1 lower in the CASSCF method) in energy (more stable) than the isoelectronic twisted Reichardt's metamer, and also thermodynamic ΔG values were found to be close to ΔE values for various methods (for example, 15.6 kcal mol−1 in the above case using the ωB97xD method). When the steric repulsions are in their full potentials at the ring junction site, attainment of a conformational planarity by any biaryl type of system has not been reported previously. Without reducing the steric constraints or even without inducing any attractive forces, determining what other factors were responsible for defying the steric forces is the main focus of this investigation. Using the results of quantum mechanical computations of NBO, rotational barriers, and other saddle points (metastable conformations in singlet and triplet surfaces) in the potential energy surfaces, the dominant contribution of the resonance stabilized quinonoid form to the ground state was delineated as the possible reason for this unusual behaviour.
AB - To be planar or to be twisted at the bridge junctions in biphenyls or biaryl types of molecular systems depends on two conflicting forces: (1) steric repulsions (destabilizations) and (2) conjugation assisted electron delocalizations (resonance stabilizations). This work reports an unfamiliar kind of behaviour shown by metamers of a zwitterionic biphenyl type of system, where the Reichardt's metamer was found to be in an usual twisted conformation (delicate balance of conflicting forces), but the Brooker's metamer was found to be in a fully planar conformation. Interestingly, at the ωB97xD/aug-cc-pVDZ level, energetically (ΔE) the planar Brooker's metamer was found to be 16.7 kcal mol−1 lower (22.9 kcal mol−1 lower in the CASSCF method) in energy (more stable) than the isoelectronic twisted Reichardt's metamer, and also thermodynamic ΔG values were found to be close to ΔE values for various methods (for example, 15.6 kcal mol−1 in the above case using the ωB97xD method). When the steric repulsions are in their full potentials at the ring junction site, attainment of a conformational planarity by any biaryl type of system has not been reported previously. Without reducing the steric constraints or even without inducing any attractive forces, determining what other factors were responsible for defying the steric forces is the main focus of this investigation. Using the results of quantum mechanical computations of NBO, rotational barriers, and other saddle points (metastable conformations in singlet and triplet surfaces) in the potential energy surfaces, the dominant contribution of the resonance stabilized quinonoid form to the ground state was delineated as the possible reason for this unusual behaviour.
UR - http://www.scopus.com/inward/record.url?scp=85132381379&partnerID=8YFLogxK
U2 - 10.1039/d1cp05372h
DO - 10.1039/d1cp05372h
M3 - Article
AN - SCOPUS:85132381379
SN - 1463-9076
VL - 24
SP - 13110
EP - 13118
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 21
ER -