Abstract
This study investigates phytochemical variations in three-dimensional (3D) printed biscuits prepared using raw and bioprocessed wholegrain/multigrain food inks. The flour-based food inks were raw wholegrains (i) 100% cowpea, (ii) 100% quinoa; bioprocessed wholegrains (iii) 100% fermented cowpea (FC), (iv) 100% malted quinoa (MQ), as well as multigrain containing composite bioprocessed blends (v) 80% FC and 20% MQ and (vi) 60% FC and 40% MQ. Phytochemicals were profiled using an ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), revealing major classes: fatty acyls (17%), flavonoids (17%), prenol lipids (14%), and amino acids and one derivative (10%). The 3D-printed biscuits containing bioprocessed inks (FC or MQ) exhibited higher phytochemical concentrations compared to raw inks, with distinct compositional trends. Multigrain biscuits showed synergistic enrichment of fatty acyls, prenol lipids, flavonoid and flavonoid glycosides, and amino acids, alongside reduced purine nucleosides. Bioprocessed multigrain inks enhance phytochemical diversity in 3D-printed biscuits, suggesting better nutritional and health-promoting composition. Reduction of purine nucleosides implies that strategic blending of bioprocessed inks might help moderate dietary purine levels. Such bioprocessed multigrain inks are integral to developing functional 3D-printed foods with balanced nutrient and metabolite profiles.
Original language | English |
---|---|
Article number | e70037 |
Journal | Legume Science |
Volume | 7 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jun 2025 |
Keywords
- composite bioprocessed food inks
- fermentation
- germination sensu stricto
- liquid chromatography-mass spectrometry
- nutraceuticals and bioactives
- wholegrains and multigrain
ASJC Scopus subject areas
- Food Science
- Plant Science