TY - JOUR
T1 - Photoelectrocatalytic application of palladium decorated zinc oxide-expanded graphite electrode for the removal of 4-nitrophenol
T2 - Experimental and computational studies
AU - Umukoro, Eseoghene H.
AU - Peleyeju, Moses G.
AU - Idris, Azeez O.
AU - Ngila, Jane C.
AU - Mabuba, Nonhlangabezo
AU - Rhyman, Lydia
AU - Ramasami, Ponnadurai
AU - Arotiba, Omotayo A.
N1 - Publisher Copyright:
© 2018 The Royal Society of Chemistry.
PY - 2018
Y1 - 2018
N2 - A novel Pd-ZnO-expanded graphite (EG) photoelectrode was constructed from a Pd-ZnO-EG nanocomposite synthesised by a hydrothermal method and characterised using various techniques such as X-ray diffractometry (XRD), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, nitrogen adsorption-desorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Cyclic voltammetry and photocurrent response measurements were also carried out on the electrode. The Pd-ZnO-EG electrode was employed in the photoelectrocatalytic removal of 4-nitrophenol as a target water pollutant at a neutral pH and with a current density of 7 mA cm-2. Optical studies revealed that the Pd-ZnO-EG absorbed strongly in the visible light region. The Pd-ZnO-EG electrode showed improved photoelectrocatalytic activity in relation to ZnO-EG and EG electrodes for the removal of the 4-nitrophenol. The photocurrent responses showed that the Pd-ZnO-EG nanocomposite electrode could be employed as a good photoelectrode for photoelectrocatalytic processes and environmental remediation such as treatment of industrial waste waters. Density functional theory method was used to model the oxidative degradation of 4-nitrophenol by the hydroxyl radical which generates hydroquinone, benzoquinone, 4-nitrocatechol, 4-nitroresorcinol and the opening of the 4-nitrophenol ring. Furthermore, the hydroxyl radical is regenerated and can further oxidise the ring structure and initiate a new degradation process.
AB - A novel Pd-ZnO-expanded graphite (EG) photoelectrode was constructed from a Pd-ZnO-EG nanocomposite synthesised by a hydrothermal method and characterised using various techniques such as X-ray diffractometry (XRD), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, nitrogen adsorption-desorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Cyclic voltammetry and photocurrent response measurements were also carried out on the electrode. The Pd-ZnO-EG electrode was employed in the photoelectrocatalytic removal of 4-nitrophenol as a target water pollutant at a neutral pH and with a current density of 7 mA cm-2. Optical studies revealed that the Pd-ZnO-EG absorbed strongly in the visible light region. The Pd-ZnO-EG electrode showed improved photoelectrocatalytic activity in relation to ZnO-EG and EG electrodes for the removal of the 4-nitrophenol. The photocurrent responses showed that the Pd-ZnO-EG nanocomposite electrode could be employed as a good photoelectrode for photoelectrocatalytic processes and environmental remediation such as treatment of industrial waste waters. Density functional theory method was used to model the oxidative degradation of 4-nitrophenol by the hydroxyl radical which generates hydroquinone, benzoquinone, 4-nitrocatechol, 4-nitroresorcinol and the opening of the 4-nitrophenol ring. Furthermore, the hydroxyl radical is regenerated and can further oxidise the ring structure and initiate a new degradation process.
UR - http://www.scopus.com/inward/record.url?scp=85044196731&partnerID=8YFLogxK
U2 - 10.1039/c8ra00180d
DO - 10.1039/c8ra00180d
M3 - Article
AN - SCOPUS:85044196731
SN - 2046-2069
VL - 8
SP - 10255
EP - 10266
JO - RSC Advances
JF - RSC Advances
IS - 19
ER -