Photodynamic therapy induced cell death mechanisms in breast cancer

Dimakatso R. Mokoena, Blassan P. George, Heidi Abrahamse

Research output: Contribution to journalReview articlepeer-review

33 Citations (Scopus)

Abstract

Breast cancer is the second most common cancer globally and the pioneering cause of mortality among women. It usually begins from the ducts or lobules, referred to as ductal carcinoma in situ, or lobular carcinoma in situ. Age, mutations in Breast Cancer Gene 1 or 2 (BRCA1 or BRCA2) genes, and dense breast tissue are the highest risk factors. Current treatments are associated with various side effects, relapse, and a low quality of life. Although conventional treatments, such as surgery and chemotherapy, have been used for decades, their adverse side effects on normal cells and tissues pose a major weakness, which calls for a non-invasive treatment option. Photodynamic therapy (PDT) has proven to be a promising form of cancer therapy. It is less invasive, target-specific, and with reduced cytotoxicity to normal cells and tissues. It involves the use of a photosensitizer (PS) and light at a specific wavelength to produce reactive oxygen species. One of the reasons for the target specificity is associated with the dense vascularization of cancer tissues, which tends to increase the surface area for the PS uptake. Photosensitizers are light-sensitive molecules, which result in cancer cell destruction followed by light irradiation. Depending on the localization of the PS within the cancer cell, its destruction may be via apoptosis, necrosis, or autophagy. This review focuses on the breast cancer etiopathology and PDT-induced cell death mechanisms in breast cancer cells.

Original languageEnglish
Article number10506
JournalInternational Journal of Molecular Sciences
Volume22
Issue number19
DOIs
Publication statusPublished - 1 Oct 2021

Keywords

  • Apoptosis
  • Breast cancer
  • Cytotoxicity
  • Necrosis
  • Photodynamic therapy (PDT)

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Photodynamic therapy induced cell death mechanisms in breast cancer'. Together they form a unique fingerprint.

Cite this