TY - JOUR
T1 - PeV-EeV Neutrinos from Gamma-Ray Blazars due to Ultrahigh-energy Cosmic-Ray Propagation
AU - Das, Saikat
AU - Gupta, Nayantara
AU - Razzaque, Soebur
N1 - Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved.
PY - 2021/4/1
Y1 - 2021/4/1
N2 - Blazars are potential sources of cosmic-ray acceleration up to ultrahigh energies (E ⪆ 1018 eV). For an efficient cosmic-ray injection from blazars, pγ collisions with extragalactic background light (EBL) and cosmic microwave background (CMB) can produce neutrino spectra with peaks near to PeV and EeV energies, respectively. In this work, we analyze the contribution of these neutrinos to the diffuse background measured by the IceCube neutrino observatory. The fraction of neutrino luminosity originating from individual redshift ranges is calculated using the distribution of BL Lacs and FSRQs provided in the Fermi-LAT 4LAC catalog. Furthermore, we use a luminosity-dependent density evolution to find the neutrino flux of unresolved blazars. The results obtained in our model indicate that as much as ≈10% of the flux upper bound at a few PeV energies can arise from cosmic-ray interactions with EBL. The same interactions will also produce secondary electrons and photons, initiating electromagnetic cascades. The resultant photon spectrum is limited by the isotropic diffuse γ-ray flux measured between 100 MeV and 820 GeV. The latter, together with the observed cosmic-ray flux at E > 1016.5 eV, can constrain the baryonic loading factor, depending on the maximum cosmic-ray acceleration energy.
AB - Blazars are potential sources of cosmic-ray acceleration up to ultrahigh energies (E ⪆ 1018 eV). For an efficient cosmic-ray injection from blazars, pγ collisions with extragalactic background light (EBL) and cosmic microwave background (CMB) can produce neutrino spectra with peaks near to PeV and EeV energies, respectively. In this work, we analyze the contribution of these neutrinos to the diffuse background measured by the IceCube neutrino observatory. The fraction of neutrino luminosity originating from individual redshift ranges is calculated using the distribution of BL Lacs and FSRQs provided in the Fermi-LAT 4LAC catalog. Furthermore, we use a luminosity-dependent density evolution to find the neutrino flux of unresolved blazars. The results obtained in our model indicate that as much as ≈10% of the flux upper bound at a few PeV energies can arise from cosmic-ray interactions with EBL. The same interactions will also produce secondary electrons and photons, initiating electromagnetic cascades. The resultant photon spectrum is limited by the isotropic diffuse γ-ray flux measured between 100 MeV and 820 GeV. The latter, together with the observed cosmic-ray flux at E > 1016.5 eV, can constrain the baryonic loading factor, depending on the maximum cosmic-ray acceleration energy.
UR - http://www.scopus.com/inward/record.url?scp=85103544705&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/abe4cd
DO - 10.3847/1538-4357/abe4cd
M3 - Article
AN - SCOPUS:85103544705
SN - 0004-637X
VL - 910
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 100
ER -