Abstract
This paper presents the influence of three lubrication environments, namely hobbing with minimum quantity lubrication (HWMQL), hobbing with flood lubrication (HWFL), and hobbing without any lubrication (HWAL), on the wear characteristics, microhardness, functional performance parameters, generation of noise and vibrations, flank surface roughness, and microgeometry deviation parameters of spur gears. Convective heat transfer coefficients in HWMQL and HWFL are evaluated to study the cooling mechanism involved and their heat dissipation capabilities during spur gear manufacturing. It is found that HWMQL-manufactured spur gears exhibited higher microhardness and smaller values of microgeometry deviations, flank surface roughness, functional performance parameters, wear rate, wear volume, and noise and vibrations than the spur gears manufactured by HWFL and HWAL. HWMQL facilitated a significantly higher convective heat transfer coefficient than HWFL, indicating its superior hobbing performance. An examination of the worn flank surfaces of HWMQL-manufactured gears revealed a wear track that resulted in less abrasive wear, wear debris, and subsurface damage, whereas the worn flank surfaces of HWFL-manufactured gears showed deep grooves, feed marks, and surface defects. This study proves that HWMQL is capable of manufacturing gears with better accuracy, enhanced wear resistance, smoother and quieter operational performance, and longer service life due to its better cooling and lubrication action. The results of this study will be very helpful for the manufacturers and users of spur gears.
Original language | English |
---|---|
Article number | 230 |
Journal | Lubricants |
Volume | 10 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2022 |
Keywords
- MQL
- convective heat transfer
- functional performance
- hobbing
- noise and vibrations
- spur gears
- wear
ASJC Scopus subject areas
- Mechanical Engineering
- Surfaces, Coatings and Films