Abstract
Cold gas dynamic spray (CGDS) is a surface coating process that uses highly accelerated particles to form the surface coating. In the CGDS process, metal particles with a diameter of 1-50 µm are carried by a gas stream at high pressure (typically 20-30 atm) through a de Laval-type nozzle to achieve supersonic velocity upon impact onto the substrate. Typically, the impact velocity ranges between 300 and 1200 m/s in the CGDS process. When the particle is accelerated to its critical velocity, which is defined as the minimum in-flight velocity at which it can deposit on the substrate, adiabatic shear instabilities will occur. Herein, to ascertain the critical velocities of different particle sizes on the bonding efficiency in CGDS process, three-dimensional numerical simulations of single particle deposition process were performed. In the CGDS process, one of the most important parameters which determine the bonding strength with the substrate is particle impact temperature. It is hypothesized that the particle will bond to the substrate when the particle’s impacting velocity surpasses the critical velocity, at which the interface can achieve 60% of the melting temperature of the particle material (Ref 1, 2). Therefore, critical velocity should be a main parameter on the coating quality. Note that the particle critical velocity is determined not only by its size, but also by its material properties. This study numerically investigates the critical velocity for the particle deposition process in CGDS. In the present numerical analysis, copper (Cu) was chosen as particle material and aluminum (Al) as substrate material. The impacting velocities were selected between 300 and 800 m/s increasing in steps of 100 m/s. The simulation result reveals temporal and spatial interfacial temperature distribution and deformation between particle(s) and substrate. Finally, a comparison is carried out between the computed results and experimental data.
Original language | English |
---|---|
Pages (from-to) | 1859-1873 |
Number of pages | 15 |
Journal | Journal of Thermal Spray Technology |
Volume | 26 |
Issue number | 8 |
DOIs | |
Publication status | Published - 1 Dec 2017 |
Keywords
- bonding
- CGDS
- critical velocity
- particle impact
ASJC Scopus subject areas
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Materials Chemistry