TY - JOUR
T1 - Optimizing Sentinel-2 feature space for improved crop biophysical and biochemical variables retrieval using the novel spectral triad feature selection algorithm
AU - Kganyago, Mahlatse
AU - Adjorlolo, Clement
AU - Mhangara, Paidamwoyo
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2024
Y1 - 2024
N2 - This study presents a novel Spectral Triad feature selection (STfs) technique based on music theory and compares it to the entire Sentinel-2 feature space and Random Forest-Recursive Feature Elimination (RF-RFE). The optimal subsets were evaluated with Random Forest for retrieving Leaf Area Index (LAI), Leaf Chlorophyll Content (LCab), and Canopy Chlorophyll Content (CCC) in a semi-arid agricultural landscape. The results indicated that the proposed STfs algorithm obtained equivalent or better (i.e. by 1–3%) retrieval accuracies for LAI (R2cv of 66%, root mean squared error of cross-validation [RMSEcv] of 0.53 m2 m−2), LCab (R2cv: 74%, RMSEcv: 7.09 µg cm−2) and CCC (R2cv: 77%, RMSEcv: 33.69 µg cm−2), using only 5, 7 and 7 variables, respectively, when compared to RF-RFE and entire Sentinel-2 feature space. Overall, the proposed STfs algorithm has great potential to optimize the spectral feature space of quasi-hyperspectral sensors for rapid crop biophysical and biochemical parameter retrieval.
AB - This study presents a novel Spectral Triad feature selection (STfs) technique based on music theory and compares it to the entire Sentinel-2 feature space and Random Forest-Recursive Feature Elimination (RF-RFE). The optimal subsets were evaluated with Random Forest for retrieving Leaf Area Index (LAI), Leaf Chlorophyll Content (LCab), and Canopy Chlorophyll Content (CCC) in a semi-arid agricultural landscape. The results indicated that the proposed STfs algorithm obtained equivalent or better (i.e. by 1–3%) retrieval accuracies for LAI (R2cv of 66%, root mean squared error of cross-validation [RMSEcv] of 0.53 m2 m−2), LCab (R2cv: 74%, RMSEcv: 7.09 µg cm−2) and CCC (R2cv: 77%, RMSEcv: 33.69 µg cm−2), using only 5, 7 and 7 variables, respectively, when compared to RF-RFE and entire Sentinel-2 feature space. Overall, the proposed STfs algorithm has great potential to optimize the spectral feature space of quasi-hyperspectral sensors for rapid crop biophysical and biochemical parameter retrieval.
KW - biophysical and biochemical variables
KW - chlorophyll content
KW - feature selection
KW - leaf area index
KW - random forest
KW - Remote sensing
KW - sentinel-2
UR - http://www.scopus.com/inward/record.url?scp=85184715353&partnerID=8YFLogxK
U2 - 10.1080/10106049.2024.2309174
DO - 10.1080/10106049.2024.2309174
M3 - Article
AN - SCOPUS:85184715353
SN - 1010-6049
VL - 39
JO - Geocarto International
JF - Geocarto International
IS - 1
M1 - 2309174
ER -