TY - GEN
T1 - Optimization of the Pumping Capacity of Centrifugal Pumps Based on System Analysis
AU - Matlakala, Motsi Ephrey
AU - von Kallon, Daramy Vandi
N1 - Publisher Copyright:
© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
PY - 2020
Y1 - 2020
N2 - The pumping capacity is the maximum flow rate through a pump at its design capacity. In the process of pumping water and other fluids, pumping capacity is required to accurately size pumping systems, determine friction head losses, construct a system curve and select a pump and motor. Failure to choose the right pump size for pumping system, improper installation and pump operation results into higher consumption of energy. The insufficient pumping capacity affects the plant’s operations such as maintenance cost, downtime, loss of production and increase in operating cost. In this study variation of the impeller diameter is used to calculate the new pump curve to improve the pumping capacity. The pumping system is analysed to determine the pumping capacity of the pump. Computational fluid dynamic (CFD) simulations are carried out to determine the performance of the pump and analyses the pumping system to achieve the pumping capacity. Results show that enhanced pumping capacity is achieved at a given impeller design with a specific shift in the pump curve. It is recommended that the pumping capacity can be optimized through trimming of impeller. Trimming of the impeller improves pump efficiency and increases the performance of the pump. In addition, the pumping capacity can also be optimized through the system analysis by adjusting the diameter of the pipes and throttling of the valves. Optimization of the pumping capacity helps with running the pumping system efficiently.
AB - The pumping capacity is the maximum flow rate through a pump at its design capacity. In the process of pumping water and other fluids, pumping capacity is required to accurately size pumping systems, determine friction head losses, construct a system curve and select a pump and motor. Failure to choose the right pump size for pumping system, improper installation and pump operation results into higher consumption of energy. The insufficient pumping capacity affects the plant’s operations such as maintenance cost, downtime, loss of production and increase in operating cost. In this study variation of the impeller diameter is used to calculate the new pump curve to improve the pumping capacity. The pumping system is analysed to determine the pumping capacity of the pump. Computational fluid dynamic (CFD) simulations are carried out to determine the performance of the pump and analyses the pumping system to achieve the pumping capacity. Results show that enhanced pumping capacity is achieved at a given impeller design with a specific shift in the pump curve. It is recommended that the pumping capacity can be optimized through trimming of impeller. Trimming of the impeller improves pump efficiency and increases the performance of the pump. In addition, the pumping capacity can also be optimized through the system analysis by adjusting the diameter of the pipes and throttling of the valves. Optimization of the pumping capacity helps with running the pumping system efficiently.
KW - Computational Fluid Dynamics
KW - Cost
KW - Impeller
KW - Pump Efficiency
KW - Pumping Capacity
KW - System Analysis
UR - http://www.scopus.com/inward/record.url?scp=85127560777&partnerID=8YFLogxK
U2 - 10.1051/matecconf/202134700024
DO - 10.1051/matecconf/202134700024
M3 - Conference contribution
AN - SCOPUS:85127560777
T3 - 12th South African Conference on Computational and Applied Mechanics, SACAM 2020
BT - 12th South African Conference on Computational and Applied Mechanics, SACAM 2020
A2 - Skatulla, Sebastian
PB - EDP Sciences
T2 - 12th South African Conference on Computational and Applied Mechanics, SACAM 2020
Y2 - 29 November 2021 through 1 December 2021
ER -