TY - GEN
T1 - OPTIMIZATION OF CNC MILLING OF GENERAL-PURPOSE POLY (METHYL METHACRYLATE)
AU - Wambua, J. M.
AU - Mwema, F. M.
AU - Akinlabi, E. T.
AU - Tanya, Buddi
N1 - Publisher Copyright:
Copyright © 2021 by ASME
PY - 2021
Y1 - 2021
N2 - The purpose of this study was to investigate the impact of CNC milling parameters on the material removal rate (MRR) and surface roughness (Ra) of the general-purpose PMMA. The milling parameters considered were cutting speed, axial depth of cut and feed rate, each having four levels obtained through experimental trial and error. The levels were 300 rpm, 700 rpm, 1300 rpm, and 2000 rpm for the cutting speed; 0.3 mm, 0.8 mm, 1.5 mm, and 2 mm for the axial depth of cut; and 50 mm/min, 100 mm/min, 200 mm/min, and 350 mm/min for the feed rate. The Taguchi technique was used to design the experiments and carry out the analysis and optimization with an L16 orthogonal array. From the analysis, the optimal milling parameters for the maximum MRR were a cutting speed of 300 rpm, an axial depth of cut of 2 mm, and a 350 mm/min feed rate. The optimal CNC milling parameters for the least Ra were obtained at a cutting speed of 2000 rpm, an axial depth of cut of 0.3 mm, and a 50 mm/min feed rate. An ANOVA conducted depicted that all three factors were significant towards the MRR with the feed rate having the highest percentage contribution (48.8%), followed by the depth of cut (38.3%), and lastly, the cutting speed (9.8%). An ANOVA for Ra depicted that cutting speed and feed rate were the most significant factors. The axial depth of cut was insignificant towards the mean surface roughness. In terms of percentage contributions to the mean surface roughness, the cutting speed had the highest contribution (59.9%), followed by the feed rate (19.4%), and lastly, the axial depth of cut (13.9%).
AB - The purpose of this study was to investigate the impact of CNC milling parameters on the material removal rate (MRR) and surface roughness (Ra) of the general-purpose PMMA. The milling parameters considered were cutting speed, axial depth of cut and feed rate, each having four levels obtained through experimental trial and error. The levels were 300 rpm, 700 rpm, 1300 rpm, and 2000 rpm for the cutting speed; 0.3 mm, 0.8 mm, 1.5 mm, and 2 mm for the axial depth of cut; and 50 mm/min, 100 mm/min, 200 mm/min, and 350 mm/min for the feed rate. The Taguchi technique was used to design the experiments and carry out the analysis and optimization with an L16 orthogonal array. From the analysis, the optimal milling parameters for the maximum MRR were a cutting speed of 300 rpm, an axial depth of cut of 2 mm, and a 350 mm/min feed rate. The optimal CNC milling parameters for the least Ra were obtained at a cutting speed of 2000 rpm, an axial depth of cut of 0.3 mm, and a 50 mm/min feed rate. An ANOVA conducted depicted that all three factors were significant towards the MRR with the feed rate having the highest percentage contribution (48.8%), followed by the depth of cut (38.3%), and lastly, the cutting speed (9.8%). An ANOVA for Ra depicted that cutting speed and feed rate were the most significant factors. The axial depth of cut was insignificant towards the mean surface roughness. In terms of percentage contributions to the mean surface roughness, the cutting speed had the highest contribution (59.9%), followed by the feed rate (19.4%), and lastly, the axial depth of cut (13.9%).
KW - ANOVA
KW - Material removal rate
KW - Milling
KW - PMMA
KW - Surface roughness
KW - Taguchi
UR - http://www.scopus.com/inward/record.url?scp=85124391792&partnerID=8YFLogxK
U2 - 10.1115/IMECE2021-68756
DO - 10.1115/IMECE2021-68756
M3 - Conference contribution
AN - SCOPUS:85124391792
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Advanced Manufacturing
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021
Y2 - 1 November 2021 through 5 November 2021
ER -