Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures

Job Maveke Wambua, Fredrick Madaraka Mwema, Stephen Akinlabi, Martin Birkett, Ben Xu, Wai Lok Woo, Mike Taverne, Ying Lung Daniel Ho, Esther Akinlabi

Research output: Contribution to journalArticlepeer-review


Purpose: The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure. Design/methodology/approach: A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures. Findings: The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells. Practical implications: The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials. Originality/value: To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.

Original languageEnglish
Pages (from-to)885-903
Number of pages19
JournalRapid Prototyping Journal
Issue number5
Publication statusPublished - 17 May 2024
Externally publishedYes


  • 3D printing
  • Compression test
  • Metamaterial
  • Optimisation
  • Star-shaped structure

ASJC Scopus subject areas

  • Mechanical Engineering
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Optimisation of printing parameters of fused filament fabrication and uniaxial compression failure analysis for four-point star-shaped structures'. Together they form a unique fingerprint.

Cite this