On the cycle-path bipartite Ramsey number

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

For bipartite graphs G1,G2,…,Gk, the bipartite Ramsey number b(G1,G2, …,Gk) is the least positive integer b, so that any coloring of the edges of Kb,b with k colors, will result in a copy of Gi in the ith color, for some i. In this paper we will show that if s is an integer such that s≥max⁡{18,(b(C34,C34)+1)/2}, then b(C2s,P2s)=2s−1.

Original languageEnglish
Article number113759
JournalDiscrete Mathematics
Volume347
Issue number2
DOIs
Publication statusPublished - Feb 2024

Keywords

  • Bipartite graph
  • Cycle
  • Path
  • Ramsey

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

Fingerprint

Dive into the research topics of 'On the cycle-path bipartite Ramsey number'. Together they form a unique fingerprint.

Cite this