Numerical solutions of a class of nonlinear Volterra integral equations

H. S. Malindzisa, M. Khumalo

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

We consider numerical solutions of a class of nonlinear (nonstandard) Volterra integral equations. We first prove the existence and uniqueness of the solution of the Volterra integral equation in the context of the space of continuous functions over a closed interval. We then use one-point collocation methods with a uniform mesh to construct solutions of the nonlinear (nonstandard) VIE and quadrature rules. We conclude that the repeated Simpson's rule gives better solutions when a reasonably large value of the stepsize is used.

Original languageEnglish
Article number652631
JournalAbstract and Applied Analysis
Volume2014
DOIs
Publication statusPublished - 2014

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Numerical solutions of a class of nonlinear Volterra integral equations'. Together they form a unique fingerprint.

Cite this