TY - GEN
T1 - Numerical simulation of steam reforming of methanol in microchannel reactor
AU - Cui, Wenzhi
AU - Li, Longjian
AU - Jen, Tien Chien
AU - Chen, Qinghua
AU - Liao, Quan
PY - 2005
Y1 - 2005
N2 - On-board hydrogen generation from hydrocarbon fuels, such as methanol, natural gas, gasoline and diesel, etc., will be technically feasible in the near future for fuel cell powered vehicles. Among all the fuel processing methods, steam reforming is considered as the most widely used method of hydrogen reforming for the lower reactive temperature, pressure and higher hydrogen ratio in reformate. A laminate micro-channel catalytic reactor was designed for the purpose of hydrogen generation from hydrocarbons. The depth of the reaction channel is 0.5 mm, and the length and width are 50 mm and 40 mm, respectively. The same geometry is designed for the heating channels. A metal sheet is placed between reacting and heating channels to separate them. Piling up alternately the two channels is to buildup the laminate microchannel reactor. Numerical simulation has been conducted in one reactive unit, i.e., one reacting channel and one heating channel. The reactant is the solution of methanol and water mixing with a certain ratio. And the reaction heat is provided by hot air flow with a temperature of 600K. A 2D steady model of the reforming reactive processes was developed and solved numerically. The ratio of water and methanol is set to be at 1.3. The conversion rate of methanol was nearly 100% at the outlet of reactor, while the volume ratio of hydrogen is 51.4% with the selectivity of CO2 reaches 49.2%. Detail results showed that the 50 mm long reacting channel could be divided into four different regimes along with the reacting course. In the first regime (0-5mm), methanol in the reactants is almost completely converted and CO is mainly generated in the third one (15-20mm), while reactions in the other two regimes are indiscoverable. The reasons leading to such phenomena are clarified in this paper.
AB - On-board hydrogen generation from hydrocarbon fuels, such as methanol, natural gas, gasoline and diesel, etc., will be technically feasible in the near future for fuel cell powered vehicles. Among all the fuel processing methods, steam reforming is considered as the most widely used method of hydrogen reforming for the lower reactive temperature, pressure and higher hydrogen ratio in reformate. A laminate micro-channel catalytic reactor was designed for the purpose of hydrogen generation from hydrocarbons. The depth of the reaction channel is 0.5 mm, and the length and width are 50 mm and 40 mm, respectively. The same geometry is designed for the heating channels. A metal sheet is placed between reacting and heating channels to separate them. Piling up alternately the two channels is to buildup the laminate microchannel reactor. Numerical simulation has been conducted in one reactive unit, i.e., one reacting channel and one heating channel. The reactant is the solution of methanol and water mixing with a certain ratio. And the reaction heat is provided by hot air flow with a temperature of 600K. A 2D steady model of the reforming reactive processes was developed and solved numerically. The ratio of water and methanol is set to be at 1.3. The conversion rate of methanol was nearly 100% at the outlet of reactor, while the volume ratio of hydrogen is 51.4% with the selectivity of CO2 reaches 49.2%. Detail results showed that the 50 mm long reacting channel could be divided into four different regimes along with the reacting course. In the first regime (0-5mm), methanol in the reactants is almost completely converted and CO is mainly generated in the third one (15-20mm), while reactions in the other two regimes are indiscoverable. The reasons leading to such phenomena are clarified in this paper.
KW - Fuel cell
KW - Micro-channel reactor
KW - Numerical simulation
KW - Steam reforming
UR - http://www.scopus.com/inward/record.url?scp=33645656231&partnerID=8YFLogxK
U2 - 10.1115/IMECE2005-82467
DO - 10.1115/IMECE2005-82467
M3 - Conference contribution
AN - SCOPUS:33645656231
SN - 0791842215
SN - 9780791842218
T3 - American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD
SP - 365
EP - 369
BT - Proceedings of the ASME Heat Transfer Division 2005
T2 - 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005
Y2 - 5 November 2005 through 11 November 2005
ER -