Abstract
The present work incorporates the synthesis of a multifunctional catalyst for the transesterification of waste cooking oil (WCO) to biodiesel and recovery of rare earth elements (REEs). For this purpose, TiO2 nanoparticles and TiO2 doped with lithium ions were prepared. The influence of lithium ions on the catalytic performance of TiO2 was attained by impregnation of the different molar ratios of lithium hydroxide to bare TiO2 . Then each catalyst was screened for catalytic conversion of WCO to fatty acid methyl ester (FAME) and also for REEs recovery. All synthesized materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) analysis, and Hammett indicator for the basicity test. The obtained biodiesel was characterized by gas chromatography with mass spectrometry (GC-MS),1 H, and13 C nuclear magnetic resonance (NMR). Moreover, the physical parameters of the synthesized biodiesel were also determined. The REEs recovery efficiency of synthesized nanomaterials was investigated, and the percentage of REEs removal was determined by inductively-coupled plasma optical emission spectroscopy (ICP-OES).
Original language | English |
---|---|
Article number | 943 |
Journal | Catalysts |
Volume | 9 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2019 |
Externally published | Yes |
Keywords
- Biodiesel
- Nanocatalyst
- Rare earth elements
- TiO
- Waste cooking oil
ASJC Scopus subject areas
- Catalysis
- Physical and Theoretical Chemistry