Neutrino mass ordering determination through combined analysis with JUNO and KM3NeT/ORCA

the KM3NeT Collaboration, the JUNO Collaboration

Research output: Contribution to journalConference articlepeer-review

Abstract

The determination of neutrino mass ordering (NMO) is one of the prime goals of several neutrino experiments. KM3NeT/ORCA and JUNO are two next-generation neutrino oscillation experiments both aiming at addressing this question. ORCA determines the NMO by probing Earth matter effects on the oscillation of atmospheric neutrinos in the GeV energy range. JUNO, on the other hand, is sensitive to the NMO by investigating the interference effects of fast oscillations in the reactor electron antineutrino spectrum at medium baseline. This poster presents the potential of determining the NMO through a combined analysis of JUNO and ORCA data. When measuring the Δm312 with a wrong ordering assumption, the best-fit values are different between the two experiments. This tension, together with good constraints on the Δm312 measurement by both experiments, enhances the combined NMO sensitivity beyond the simple sum of their sensitivities. The analysis shows that 5σ significance is reachable in less than 2 years of data taking with both experiements for true normal neutrino mass ordering assuming current global best-fit values of the oscillation parameters, while 6 years will be needed for any other parameter set.

Original languageEnglish
Article number1196
JournalProceedings of Science
Volume395
Publication statusPublished - 18 Mar 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: 12 Jul 202123 Jul 2021

ASJC Scopus subject areas

  • Multidisciplinary

Fingerprint

Dive into the research topics of 'Neutrino mass ordering determination through combined analysis with JUNO and KM3NeT/ORCA'. Together they form a unique fingerprint.

Cite this