Abstract
Purification of industrial wastewater from dyes receiving increasing attentions. The aim of the present manuscript was to fabricate graphene based nanocomposites using a homogeneous and facile approach. Co-precipitation method was used to synthesize zirconium oxide (ZrO2) and neodymium doped ZrO2-graphene oxide (Nd-ZrO2-GO) nanocomposites with varying weight percent concentrations of neodymium to investigate the increasing photocatalytic activity. The Nd-ZrO2-GO catalysts were characterized using X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (SEM), and ultra violet-visible (UV-vis)-spectroscopy to evaluate their optical, morphological and structural properties respectively. The photocatalytic degradation potential of the nanocatalyst was assessed by the degradation of Eosin Y dye in aqueous solution under simulated solar light irradiation. The Nd-ZrO2-GO was observed to have higher photocatalytic degradation potential than the bare ZrO2. The most efficient photocatalyst for the degradation of Eosin Y dye was 0.3 % Nd-ZrO2-GO with about 80 % efficiency within 180 min and a Ka value of 4.19 × 10-3. Nd-ZrO2-GO catalyst would be considered as efficient photocatalyst to degrade the industrial dyes (Eosin Y) avoiding the dreary filtration steps.
Original language | English |
---|---|
Pages (from-to) | 946-950 |
Number of pages | 5 |
Journal | Advanced Materials Letters |
Volume | 7 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2016 |
Keywords
- Dye degradation
- Eosin Y
- Graphene oxide
- Photocatalysis
- Photodegradation
- Polymer-metal nanocomposites
ASJC Scopus subject areas
- General Materials Science