Abstract
The research interests of the Hamblin Laboratory are broadly centered on the use of different kinds of light to treat many different diseases. Photodynamic therapy (PDT) uses the combination of dyes with visible light to produce reactive oxygen species and kill bacteria, cancer cells and destroy unwanted tissue. Likewise, UV light is also good at killing especially pathogens. By contrast, red or near-infrared light can have the opposite effect, to act to preserve tissue from dying and can stimulate healing and regeneration. In all these applications, nanotechnology is having an ever-growing impact. In PDT, self-assembled nano-drug carriers (micelles, liposomes, etc.) play a great role in solubilizing the photosensitizers, metal nanoparticles can carry out plasmon resonance enhancement, and fullerenes can act as photosensitizers, themselves. In the realm of healing, single-walled carbon nanotubes can be electrofocused to produce nano-electonic biomedical devices, and nanomaterials will play a great role in restorative dentistry.
Original language | English |
---|---|
Pages (from-to) | 359-372 |
Number of pages | 14 |
Journal | Nanotechnology Reviews |
Volume | 4 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Aug 2015 |
Externally published | Yes |
Keywords
- Hamblin Laboratory
- nanotechnology
- photodynamic therapy
ASJC Scopus subject areas
- Biotechnology
- Medicine (miscellaneous)
- Materials Science (miscellaneous)
- Energy Engineering and Power Technology
- Engineering (miscellaneous)
- Process Chemistry and Technology