Nanostructured β-Cyclodextrin-Hyperbranched Polyethyleneimine (β-CD-HPEI) Embedded in Polysulfone Membrane for the Removal of Humic Acid from Water

S. P. Malinga, O. A. Arotiba, R. W.M. Krause, S. F. Mapolie, M. S. Diallo, B. B. Mamba

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

The synthesis of a new β-cyclodextrin-hyperbranched polyethyleneimine (β-CD-HPEI)/polysulfone (PSf) membranes via interfacial polymerization of trimesoyl chloride and β-CD-HPEI is described in this paper. The membranes were characterized by atomic force microscopy (AFM), high resolution scanning electron microscopy (HR-SEM) and contact-angle measurements. Water permeability and rejection data were obtained using a cross-flow filtration system at 0.69 MPa. The membranes were hydrophilic (25° to 63°), showed high humic acid rejection (>80%), and maintained a constant flux throughout the filtration. The modified membranes were rougher than the pristine PSf membranes but they exhibited better antifouling properties due to the hydrophilic surface which acted as a barrier against humic acid deposition. The modification of PSf with β-CD-HPEI resulted in enhanced hydrophilicity and water permeability while still maintaining high humic acid rejection. Supplemental materials are available for this article. Go to the publisher's online edition of Separation Science & Technology to view the supplemental file.

Original languageEnglish
Pages (from-to)2724-2734
Number of pages11
JournalSeparation Science and Technology
Volume48
Issue number18
DOIs
Publication statusPublished - Dec 2013

Keywords

  • humic acid
  • hyperbranched polyethyleneimine
  • polysulfone
  • water treatment
  • β-cyclodextrin

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Process Chemistry and Technology
  • Filtration and Separation

Fingerprint

Dive into the research topics of 'Nanostructured β-Cyclodextrin-Hyperbranched Polyethyleneimine (β-CD-HPEI) Embedded in Polysulfone Membrane for the Removal of Humic Acid from Water'. Together they form a unique fingerprint.

Cite this