TY - JOUR
T1 - Muon bundle reconstruction with KM3NeT/ORCA using graph convolutional networks
AU - KM3NeT Collaboration
AU - Reck, Stefan
AU - Eberl, Thomas
AU - Katz, Uli
AU - Ageron, M.
AU - Aiello, S.
AU - Albert, A.
AU - Alshamsi, M.
AU - Alves Garre, S.
AU - Aly, Z.
AU - Ambrosone, A.
AU - Ameli, F.
AU - Andre, M.
AU - Androulakis, G.
AU - Anghinolfi, M.
AU - Anguita, M.
AU - Anton, G.
AU - Ardid, M.
AU - Ardid, S.
AU - Assal, W.
AU - Aublin, J.
AU - Bagatelas, C.
AU - Baret, B.
AU - Basegmez du Pree, S.
AU - Bendahman, M.
AU - Benfenati, F.
AU - Berbee, E.
AU - van den Berg, A. M.
AU - Bertin, V.
AU - Beurthey, S.
AU - van Beveren, V.
AU - Biagi, S.
AU - Billault, M.
AU - Bissinger, M.
AU - Boettcher, M.
AU - Bou Cabo, M.
AU - Boumaaza, J.
AU - Bouta, M.
AU - Boutonnet, C.
AU - Bouvet, G.
AU - Bouwhuis, M.
AU - Bozza, C.
AU - Brânzaş, H.
AU - Bruijn, R.
AU - Brunner, J.
AU - Bruno, R.
AU - Buis, E.
AU - Buompane, R.
AU - Busto, J.
AU - Caiffi, B.
AU - Razzaque, S.
N1 - Publisher Copyright:
© Copyright owned by the author(s).
PY - 2022/3/18
Y1 - 2022/3/18
N2 - KM3NeT/ORCA is a water-Cherenkov neutrino detector, currently under construction in the Mediterranean Sea at a depth of 2450 meters. The project’s main goal is the determination of the neutrino mass hierarchy by measuring the energy- and zenith-angle-resolved oscillation probabilities of atmospheric neutrinos traversing the Earth. Additionally, the detector observes a large amount of atmospheric muons, which can be used to study extensive air showers generated by cosmic ray particles. This work describes a deep-learning based reconstruction of atmospheric muons using graph convolutional networks. They are used to reconstruct the zenith angle, the muon multiplicity and the diameter of atmospheric muon bundles. Simulations and measured data from an early four line stage of the detector are used to evaluate the performance. Furthermore, the reconstructions are compared to the ones of classical approaches, and use cases for the indirect study of cosmic ray particles are shown.
AB - KM3NeT/ORCA is a water-Cherenkov neutrino detector, currently under construction in the Mediterranean Sea at a depth of 2450 meters. The project’s main goal is the determination of the neutrino mass hierarchy by measuring the energy- and zenith-angle-resolved oscillation probabilities of atmospheric neutrinos traversing the Earth. Additionally, the detector observes a large amount of atmospheric muons, which can be used to study extensive air showers generated by cosmic ray particles. This work describes a deep-learning based reconstruction of atmospheric muons using graph convolutional networks. They are used to reconstruct the zenith angle, the muon multiplicity and the diameter of atmospheric muon bundles. Simulations and measured data from an early four line stage of the detector are used to evaluate the performance. Furthermore, the reconstructions are compared to the ones of classical approaches, and use cases for the indirect study of cosmic ray particles are shown.
UR - http://www.scopus.com/inward/record.url?scp=85145020474&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85145020474
SN - 1824-8039
VL - 395
JO - Proceedings of Science
JF - Proceedings of Science
M1 - 1048
T2 - 37th International Cosmic Ray Conference, ICRC 2021
Y2 - 12 July 2021 through 23 July 2021
ER -