Abstract
A NordhausGaddum-type result is a (tight) lower or upper bound on the sum or product of a parameter of a graph and its complement. In this paper we examine the sum and product of γt( G1), γt( G2),..., γt( Gk) and the sum of γ( G1),γ( G2),...,γ( Gk) where G1⊕ G2⊕⋯⊕ Gk= Kn for positive integers n and k, γ(G) is the domination number and γt(G) is total domination number of a graph G. We show that ∑j=1kγ( Gj)≤(k-1)n+1 with equality if and only if Gi= Kn for some i∈1,...,k. For n≥7, 3≤k≤n-2 and δ( Gi)≥1 for each i∈1,2,...,k, we show that ∑j=1k γt( Gj)≤(k-1)(n+1).
Original language | English |
---|---|
Pages (from-to) | 1137-1142 |
Number of pages | 6 |
Journal | Discrete Applied Mathematics |
Volume | 160 |
Issue number | 7-8 |
DOIs | |
Publication status | Published - May 2012 |
Keywords
- Domination
- NordhausGaddum
- Total domination
ASJC Scopus subject areas
- Discrete Mathematics and Combinatorics
- Applied Mathematics