Abstract
This article presents a reliable method of multi-performance characteristics optimization of TIG dissimilar welding of mild steel and stainless steel. Grey-integrated Taguchi optimization approach was adopted for the optimization of the welding process parameters such as the welding current, the welding voltage and the gas flow rate for multi-performance characteristics such as the ultimate tensile strength, yield strength, percentage elongation and Vickers microhardness of the fusion zone. L9 Taguchi orthogonal array was employed with three process parameters all at three levels. The welding current was the most significant process parameter for the multi-performance characteristics of the weld joint. The optimal setting for the multi-performance characteristics of the weld joint was obtained as welding current at level 1 (110 A), welding voltage at level 1 (11 V) and gas flow rate at level 3 (18 l min−1). The corresponding response variables at the optimal setting were ultimate tensile strength, yield strength, percentage elongation and Vickers microhardness of 493.29 MPa, 395.38 MPa, 31.35% and 390.52 HV respectively. These values are all found to be higher than the values obtained at the initial settings. This shows that grey-integrated Taguchi optimization is an effective method in multi-performance characteristics optimization of dissimilar welded material.
Original language | English |
---|---|
Pages (from-to) | 749-758 |
Number of pages | 10 |
Journal | International Journal of Advanced Manufacturing Technology |
Volume | 126 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - May 2023 |
Keywords
- Grey-relational analysis
- Multi-performance characteristics
- Taguchi optimization
- Welding
ASJC Scopus subject areas
- Control and Systems Engineering
- Software
- Mechanical Engineering
- Computer Science Applications
- Industrial and Manufacturing Engineering