Molecular Dynamics of Atomic Layer Deposition: Sticking Coefficient Investigation

Thokozane Justin Kunene, Lagouge Kwanda Tartibu, Sina Karimzadeh, Peter Ozaveshe Oviroh, Kingsley Ukoba, Tien Chien Jen

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

This study focused on the atomic scale growth dynamics of amorphous Al2O3 films microscale structural relaxation. Classical Molecular Dynamics (MD) can not entirely model the challenging ALD dynamics due to the large timescales. The all-atom approach has rules based on deposition actions modelled MD relaxations that form as input to attain a single ALD cycle. MD relaxations are used to create a realistic equilibrium surface. This approach is fitting to this study as the investigation of the sticking coefficient is only at the first monolayer that includes the layering of a hydroxyl surface of alumina. The study provides insight between atomic-level numerical information and experimental measurements of the sticking coefficient related to the atomic layer deposition. The MD modeling was for the deposition of Al2O3, using trimethylaluminum (TMA) and water as precursors. The film thickness of 1.7 Å yields an initial sticking coefficient of TMA to be 4.257 × 10−3 determined from the slope of the leading front of the thickness profile at a substrate temperature of 573 K. This work adds to the knowledge of the kinetic nature of ALD at the atomic level. It provides quantitative information on the sticking coefficient during ALD.

Original languageEnglish
Article number2188
JournalApplied Sciences (Switzerland)
Volume12
Issue number4
DOIs
Publication statusPublished - 1 Feb 2022

Keywords

  • Atomic layer deposition
  • Film thickness
  • Molecular dynamics
  • Sticking coefficient

ASJC Scopus subject areas

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Molecular Dynamics of Atomic Layer Deposition: Sticking Coefficient Investigation'. Together they form a unique fingerprint.

Cite this