TY - JOUR
T1 - Mn-ni-co-o spinel oxides towards oxygen reduction reaction in alkaline medium
T2 - Mn0.5ni0.5co2o4/c synergism and cooperation
AU - Matthews, Thabo
AU - Dolla, Tarekegn Heliso
AU - Gwebu, Sandile Surprise
AU - Mashola, Tebogo Abigail
AU - Dlamini, Lihle Tshepiso
AU - Carleschi, Emanuela
AU - Ndungu, Patrick
AU - Maxakato, Nobanathi Wendy
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/9
Y1 - 2021/9
N2 - Mn-doped spinel oxides MnxNi1−xCo2O4 (x = 0, 0.3, 0.5, 0.7, and 1) were synthesized using the citric acid-assisted sol–gel method. The Mn0.5Ni0.5Co2O4 (x = 0.5) supported on carbon nanosheets, Mn0.5Ni0.5Co2O4/C, was also prepared using the same method employing NaCl and glucose as a template and carbon source, respectively, followed by pyrolysis under an inert atmosphere. The electrocatalytic oxygen reduction reaction (ORR) activity was performed in alkaline media. Cyclic voltammetry (CV) was used to investigate the oxygen reduction performance of MnxNi1−xCo2O4 (x = 0, 0.3, 0.5, 0.7, and 1), and Mn0.5Ni0.5Co2O4 was found to be the best-performing electrocatalyst. Upon supporting the Mn0.5Ni0.5Co2O4 on a carbon sheet, the electrocatalytic activity was significantly enhanced owing to its large surface area and the improved charge transfer brought about by the carbon support. Rotating disk electrode studies show that the ORR electrocatalytic activity of Mn0.5Ni0.5Co2O4/C proceeds via a four-electron pathway. Mn0.5Ni0.5Co2O4/C was found to possess E1/2 (V) = 0.856, a current density of 5.54 mA cm−2, and a current loss of approximately 0.11% after 405 voltammetric scan cycles. This study suggests that the interesting electrocatalytic performance of multimetallic transition metal oxides can be further enhanced by supporting them on conductive carbon materials, which improve charge transfer and provide a more active surface area.
AB - Mn-doped spinel oxides MnxNi1−xCo2O4 (x = 0, 0.3, 0.5, 0.7, and 1) were synthesized using the citric acid-assisted sol–gel method. The Mn0.5Ni0.5Co2O4 (x = 0.5) supported on carbon nanosheets, Mn0.5Ni0.5Co2O4/C, was also prepared using the same method employing NaCl and glucose as a template and carbon source, respectively, followed by pyrolysis under an inert atmosphere. The electrocatalytic oxygen reduction reaction (ORR) activity was performed in alkaline media. Cyclic voltammetry (CV) was used to investigate the oxygen reduction performance of MnxNi1−xCo2O4 (x = 0, 0.3, 0.5, 0.7, and 1), and Mn0.5Ni0.5Co2O4 was found to be the best-performing electrocatalyst. Upon supporting the Mn0.5Ni0.5Co2O4 on a carbon sheet, the electrocatalytic activity was significantly enhanced owing to its large surface area and the improved charge transfer brought about by the carbon support. Rotating disk electrode studies show that the ORR electrocatalytic activity of Mn0.5Ni0.5Co2O4/C proceeds via a four-electron pathway. Mn0.5Ni0.5Co2O4/C was found to possess E1/2 (V) = 0.856, a current density of 5.54 mA cm−2, and a current loss of approximately 0.11% after 405 voltammetric scan cycles. This study suggests that the interesting electrocatalytic performance of multimetallic transition metal oxides can be further enhanced by supporting them on conductive carbon materials, which improve charge transfer and provide a more active surface area.
KW - Alkaline fuel cells
KW - Electrocatalyst
KW - Oxygen reduction reaction
KW - Spinel oxide
UR - http://www.scopus.com/inward/record.url?scp=85114092890&partnerID=8YFLogxK
U2 - 10.3390/catal11091059
DO - 10.3390/catal11091059
M3 - Article
AN - SCOPUS:85114092890
SN - 2073-4344
VL - 11
JO - Catalysts
JF - Catalysts
IS - 9
M1 - 1059
ER -