Missing magnetism in Sr4Ru3O10: Indication for Antisymmetric Exchange Interaction

Franziska Weickert, Leonardo Civale, Boris Maiorov, Marcelo Jaime, Myron B. Salamon, Emanuela Carleschi, André M. Strydom, Rosalba Fittipaldi, Veronica Granata, Antonio Vecchione

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Metamagnetism occuring inside a ferromagnetic phase is peculiar. Therefore, Sr4Ru3O10, a TC = 105 K ferromagnet, has attracted much attention in recent years, because it develops a pronounced metamagnetic anomaly below TC for magnetic fields applied in the crystallographic ab-plane. The metamagnetic transition moves to higher fields for lower temperatures and splits into a double anomaly at critical fields Hc1 = 2.3 T and Hc2 = 2.8 T, respectively. Here, we report a detailed study of the different components of the magnetization vector as a function of temperature, applied magnetic field, and varying angle in Sr4Ru3O10. We discover for the first time a reduction of the magnetic moment in the plane of rotation at the metamagnetic transition. The anomaly shifts to higher fields by rotating the field from H ⊥ c to H // c. We compare our experimental findings with numerical simulations based on spin reorientation models taking into account magnetocrystalline anisotropy, Zeeman effect and antisymmetric exchange interactions. While Magnetocrystalline anisotropy combined with a Zeeman term are sufficient to explain a metamagnetic transition in Sr4Ru3O10, a Dzyaloshinskii-Moriya term is crucial to account for the reduction of the magnetic moment as observed in the experiments.

Original languageEnglish
Article number3867
JournalScientific Reports
Volume7
Issue number1
DOIs
Publication statusPublished - 1 Dec 2017

ASJC Scopus subject areas

  • Multidisciplinary

Fingerprint

Dive into the research topics of 'Missing magnetism in Sr4Ru3O10: Indication for Antisymmetric Exchange Interaction'. Together they form a unique fingerprint.

Cite this