Abstract
High-efficiency, safe and economically viable nano-engineered platforms for oil spill cleanup and recovery are of great importance. This review takes account of the concept of nanomotors and micromotors and their most advancements in use for oil spill treatment. The fundamental facets of artificial micro- and nano-machines/nanobots/nanomotors (MNMs) are first documented, followed by the most recent influencing developments in chemical engineering approaches toward their specific utilizations. The surface chemistry of these MNMs, their behaviors in different water matrices and their roles in the removal of oil are examined, revealing great rooms for improvement. The strategies for surface and structural modification of these tiny machines toward enhancing their reactivity in the removal of oil and coupled tasking are discussed in details, highlighting the significance of fit-for-duty design and tailored fabrication. The engineering limitations and practical implementation barriers of this emerging technology and how it can be overcome are also considered. Finally, some engineering boundaries and perspectives of this fast-evolving field are proposed at the end.
Original language | English |
---|---|
Article number | 129516 |
Journal | Chemosphere |
Volume | 271 |
DOIs | |
Publication status | Published - May 2021 |
Keywords
- Biodegradation
- Micro- and nanomotors
- Nanotechnology
- Oil spill cleanup
- Recovery
ASJC Scopus subject areas
- Environmental Engineering
- General Chemistry
- Environmental Chemistry
- Pollution
- Public Health, Environmental and Occupational Health
- Health, Toxicology and Mutagenesis