Microcystin concentrations and liver histopathology in Clarias gariepinus and Oreochromis mossambicus from three impacted rivers flowing into a hyper-eutrophic freshwater system: A pilot study

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

The Roodeplaat Dam and its three inflowing rivers are highly impacted by surrounding anthropogenic activities. The system is hyper-eutrophic and characterized by seasonal algal blooms and previous studies have reported levels of the hepatotoxin microcystin in the water of the impoundment. Limited information is available on the microcystin concentrations in the inflowing rivers and no information is available on the bioaccumulated levels and potential health effects in fish inhabiting these rivers. The aim of this study was to do a histopathological assessment and to determine the concentrations of bioaccumulated microcystins in the livers of two indicator fish species Clarias gariepinus and Oreochromis mossambicus. The results showed that the two species bioaccumulate microcystins at different concentrations and that their hepatic health response varied. The liver index was significantly higher for C. gariepinus compared to O. mossambicus. No significant positive correlation was found between the bioaccumulated microcystin levels and the liver histology index. It is recommended that this pilot study be followed by a controlled exposure study to confirm a possible cause and effect relationship between microcystin exposure and the specific liver alterations identified.

Original languageEnglish
Article number103222
JournalEnvironmental Toxicology and Pharmacology
Volume71
DOIs
Publication statusPublished - Oct 2019

Keywords

  • Eutrophication
  • Hepatotoxin
  • Microcystin-LR
  • Microcystin-RR
  • Microcystin-YR
  • Roodeplaat Dam

ASJC Scopus subject areas

  • Toxicology
  • Pharmacology
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Microcystin concentrations and liver histopathology in Clarias gariepinus and Oreochromis mossambicus from three impacted rivers flowing into a hyper-eutrophic freshwater system: A pilot study'. Together they form a unique fingerprint.

Cite this