Metals (Ga, In) encapsulated aluminum nitride nanotubes (AlNNTs) as nonenzymatic sensors for biomarker volatiles of liver cirrhosis: A computational study

Obinna C. Godfrey, Hitler Louis, Abdullah G. Al-Sehemi, Terkumbur E. Gber, Yasar N. Kavil, Ogonna F. Ede, Faith O. Akor, Adedapo S. Adeyinka

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

In the realm of scientific curiosity, the quest to develop groundbreaking biosensor technology and materials that cater to the urgent societal demands in healthcare, environment, food safety, and beyond has reached unprecedented heights. In this study, we delve into the captivating world of cutting-edge research, harnessing the power of density functional theory (DFT) at the B3LYP-GD3(BJ)/def2-SVP level of theory to investigate the adsorption, conductivity, reactivity, and dynamical stability of biomarker volatiles of liver cirrhosis: limonene (LMN), methanol (MTN), and pentanone (PTN) on aluminum nitride nanotube (AlNNT) and its metals doped Indium (In) and Gallium (Ga) designed surfaces. From the evolution in band gap analysis, PTN_Ga@AlNNT was noticed to have obtained least energy gap of 3.035 eV whereas, LMN_Ga@AlNNT system had the highest energy gap of 4.330 eV. The calculated fraction of electronic transfer for the studied systems were observed as thus; −2.48936, −0.798342 and −6.321428571 for LMN_Ga@AlNNT, MTN_Ga@AlNNT and PTN_Ga@AlNNT respectively. The perturbation energy analysis presents an increasing stabilization energy of Aluminum nanotube doped with Gallium (Ga) and indium (In) surface to followed the trend; In@ AINNT > Ga@ AINNT. Results from the Molecular Dynamic simulation suggest that the nanomaterials studied induced conformational changes in all six complexes during the simulation, as evidenced by the changes in energy and temperature. Also, from the UV– Vis analysis, the excited states in all three instances are single-A states, which implies they have spin quantum number S = 0. We hope this research work will contribute to the development efficient biosensor materials.

Original languageEnglish
Article number123398
JournalJournal of Molecular Liquids
Volume392
DOIs
Publication statusPublished - 15 Dec 2023

Keywords

  • Adsorption
  • Biomarkers
  • DFT
  • Liver cirrhosis
  • Nanotubes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Spectroscopy
  • Physical and Theoretical Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Metals (Ga, In) encapsulated aluminum nitride nanotubes (AlNNTs) as nonenzymatic sensors for biomarker volatiles of liver cirrhosis: A computational study'. Together they form a unique fingerprint.

Cite this