TY - JOUR
T1 - Metal-doped mesoporous ZrO2catalyzed chemoselective synthesis of allylic alcohols from Meerwein-Ponndorf-Verley reduction of α,β-unsaturated aldehydes
AU - Akinnawo, Christianah Aarinola
AU - Bingwa, Ndzondelelo
AU - Meijboom, Reinout
N1 - Publisher Copyright:
© The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.
PY - 2021/5/7
Y1 - 2021/5/7
N2 - Meerwein-Ponndorf-Verley reduction (MPVr) is a sustainable route for the chemoselective transformation of α,β-unsaturated aldehydes. However, tailoring ZrO2 catalysts for improved surface-active sites and maximum performance in the MPV reaction is still a challenge. Here, we synthesized mesoporous zirconia (ZrO2) and metal-doped zirconia (M_ZrO2, M = Cr, Mn, Fe, and Ni). The incorporation of metal dopants into zirconia's crystal framework alters its physico-chemical properties such as surface area and total acidity-basicity. The prepared catalysts were evaluated in the MPVr using 2-propanol as a hydrogen donor under mild reaction conditions. The catalysts' remarkable reactivity depends mainly on their surface mesostructure's intrinsic properties rather than the specific surface area. Cr_ZrO2, which is stable and sustainable, presented superior activity and 100% selectivity to unsaturated alcohols. The synergistic effect between Cr and Zr species in the binary oxide facilitated the Lewis acidity-induced performance of the Cr_ZrO2 catalyst. Our work presents the first innovative application of a well-designed mesoporous Cr_ZrO2 in the green synthesis of unsaturated alcohols with exceptional reactivity.
AB - Meerwein-Ponndorf-Verley reduction (MPVr) is a sustainable route for the chemoselective transformation of α,β-unsaturated aldehydes. However, tailoring ZrO2 catalysts for improved surface-active sites and maximum performance in the MPV reaction is still a challenge. Here, we synthesized mesoporous zirconia (ZrO2) and metal-doped zirconia (M_ZrO2, M = Cr, Mn, Fe, and Ni). The incorporation of metal dopants into zirconia's crystal framework alters its physico-chemical properties such as surface area and total acidity-basicity. The prepared catalysts were evaluated in the MPVr using 2-propanol as a hydrogen donor under mild reaction conditions. The catalysts' remarkable reactivity depends mainly on their surface mesostructure's intrinsic properties rather than the specific surface area. Cr_ZrO2, which is stable and sustainable, presented superior activity and 100% selectivity to unsaturated alcohols. The synergistic effect between Cr and Zr species in the binary oxide facilitated the Lewis acidity-induced performance of the Cr_ZrO2 catalyst. Our work presents the first innovative application of a well-designed mesoporous Cr_ZrO2 in the green synthesis of unsaturated alcohols with exceptional reactivity.
UR - http://www.scopus.com/inward/record.url?scp=85105493967&partnerID=8YFLogxK
U2 - 10.1039/d1nj00936b
DO - 10.1039/d1nj00936b
M3 - Article
AN - SCOPUS:85105493967
SN - 1144-0546
VL - 45
SP - 7878
EP - 7892
JO - New Journal of Chemistry
JF - New Journal of Chemistry
IS - 17
ER -