Metabolomic Insights into Cross-Feeding Interactions Between Priestia megaterium PM and Pseudomonas fluorescens NO4: Unveiling Microbial Communication in Plant Growth-Promoting Rhizobacteria

Nompumelelo R. Sibanyoni, Lizelle A. Piater, Pavel Kerchev, Ntakadzeni E. Madala, Msizi I. Mhlongo

Research output: Contribution to journalArticlepeer-review

Abstract

Plant growth-promoting rhizobacteria (PGPR) engage in complex chemical exchange and signalling processes to enhance their survival, rhizosphere colonisation, and plant-beneficial roles. These microbial interactions are mediated by various chemical cues, including quorum sensing (QS) molecules, cyclic peptides, lipopeptides, nutrients, volatile organic compounds (VOC), and phytohormones. Cross-feeding, where one microorganism consumes metabolites produced by another, exemplifies direct chemical communication that shapes community dynamics and metabolic cooperation. However, the effects of cross-feeding among different PGPR strains remain insufficiently characterised. In this study, an LC–MS-based metabolomics approach, combined with multivariate statistical analysis, was employed to investigate metabolic perturbations induced by cross-feeding among PGPR strains. Growth curve analysis revealed that cross-fed PGPR exhibited growth patterns comparable to controls, with a slight reduction in biomass. Metabolic profiling indicated time-dependent shifts in the metabolic state of the cross-fed organisms, suggesting adaptive metabolic reprogramming in response to the donor-conditioned media. Multivariate analysis identified distinct metabolite alterations between cross-fed and control groups across different time points, highlighting the influence of nutrient availability on microbial growth dynamics. Notably, cross-fed groups showed decreased levels of primary metabolites such as amino acids and sugars alongside increased production of secondary metabolites, including surfactins, salicylic acid, and carboxylic acids. These secondary metabolites are implicated in plant growth promotion and defence, indicating their potential as natural biostimulants. The findings advance the understanding of PGPR interactions and chemical communication in the rhizosphere, supporting the development of sustainable agricultural practices by leveraging beneficial microbial interactions. Future research should explore these interactions within more complex microbial communities.

Original languageEnglish
Article number76
JournalMicrobial Ecology
Volume88
Issue number1
DOIs
Publication statusPublished - Dec 2025

Keywords

  • Chemical communication
  • Cross-feeding
  • Metabolomics
  • Microbial interactions
  • PGPR

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Soil Science

Fingerprint

Dive into the research topics of 'Metabolomic Insights into Cross-Feeding Interactions Between Priestia megaterium PM and Pseudomonas fluorescens NO4: Unveiling Microbial Communication in Plant Growth-Promoting Rhizobacteria'. Together they form a unique fingerprint.

Cite this