Abstract
We present extractions of the nucleon nonsinglet moments utilizing new precision data on the deuteron F2 structure function at large Bjorken-x determined via the Rosenbluth separation technique at Jefferson Lab Experimental Hall C. These new data are combined with a complementary set of data on the proton previously measured in Hall C at similar kinematics and world datasets on the proton and deuteron at lower x measured at SLAC and CERN. The new Jefferson Lab data provide coverage of the upper third of the x range, crucial for precision determination of the higher moments. In contrast to previous extractions, these moments have been corrected for nuclear effects in the deuteron using a new global fit to the deuteron and proton data. The obtained experimental moments represent an order of magnitude improvement in precision over previous extractions using high x data. Moreover, recent exciting developments in lattice QCD calculations provide a first ever comparison of these new experimental results with calculations of moments carried out at the physical pion mass, as well as a new approach that first calculates the quark distributions directly before determining moments.
Original language | English |
---|---|
Article number | 022501 |
Journal | Physical Review Letters |
Volume | 123 |
Issue number | 2 |
DOIs | |
Publication status | Published - 9 Jul 2019 |
ASJC Scopus subject areas
- General Physics and Astronomy