Abstract
Long time solutions to the Frank-Kamenetskii partial differential equation modelling a thermal explosion in a vessel are obtained using matrix exponentiation. Spatial derivatives are approximated by high-order finite difference approximations. A forward difference approximation to the time derivative leads to a Lawson-Euler scheme. Computations performed with a BDF approximation to the time derivative and a fourth-order Runge-Kutta approximation to the time derivative are compared to results obtained with the Lawson-Euler scheme. Variation in the central temperature of the vessel corresponding to changes in the shape parameter and Frank-Kamenetskii parameter are computed and discussed.
Original language | English |
---|---|
Article number | 713798 |
Journal | Mathematical Problems in Engineering |
Volume | 2012 |
DOIs | |
Publication status | Published - 2012 |
Externally published | Yes |
ASJC Scopus subject areas
- General Mathematics
- General Engineering