Mass Spectral Molecular Networking to Profile the Metabolome of Biostimulant Bacillus Strains

Lerato Nephali, Paul Steenkamp, Karl Burgess, Johan Huyser, Margaretha Brand, Justin J.J. van der Hooft, Fidele Tugizimana

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Beneficial soil microbes like plant growth-promoting rhizobacteria (PGPR) significantly contribute to plant growth and development through various mechanisms activated by plant-PGPR interactions. However, a complete understanding of the biochemistry of the PGPR and microbial intraspecific interactions within the consortia is still enigmatic. Such complexities constrain the design and use of PGPR formulations for sustainable agriculture. Therefore, we report the application of mass spectrometry (MS)-based untargeted metabolomics and molecular networking (MN) to interrogate and profile the intracellular chemical space of PGPR Bacillus strains: B. laterosporus, B. amyloliquefaciens, B. licheniformis 1001, and B. licheniformis M017 and their consortium. The results revealed differential and diverse chemistries in the four Bacillus strains when grown separately, and also differing from when grown as a consortium. MolNetEnhancer networks revealed 11 differential molecular families that are comprised of lipids and lipid-like molecules, benzenoids, nucleotide-like molecules, and organic acids and derivatives. Consortium and B. amyloliquefaciens metabolite profiles were characterized by the high abundance of surfactins, whereas B. licheniformis strains were characterized by the unique presence of lichenysins. Thus, this work, applying metabolome mining tools, maps the microbial chemical space of isolates and their consortium, thus providing valuable insights into molecular information of microbial systems. Such fundamental knowledge is essential for the innovative design and use of PGPR-based biostimulants.

Original languageEnglish
Article number920963
JournalFrontiers in Plant Science
Volume13
DOIs
Publication statusPublished - 9 Jun 2022

Keywords

  • Bacillus
  • biostimulants
  • GNPS platform
  • lipopeptides
  • metabolomics
  • molecular networking

ASJC Scopus subject areas

  • Plant Science

Fingerprint

Dive into the research topics of 'Mass Spectral Molecular Networking to Profile the Metabolome of Biostimulant Bacillus Strains'. Together they form a unique fingerprint.

Cite this