Magnetostratigraphy across the Triassic-Jurassic boundary in the main Karoo Basin

Lara Sciscio, Michiel de Kock, Emese Bordy, Fabien Knoll

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


The end-Triassic mass extinction and the transition and explosive diversification of fauna over the Triassic-Jurassic boundary is poorly understood and poorly represented in the rock record of the Southern Hemisphere. This is despite the rich diversity in both body and trace fossils of Triassic-Jurassic age in southern Africa, which is not found in coeval Northern Hemisphere localities. We report here the first palaeomagnetic polarity zonation of the Upper Triassic-Lower Jurassic continental red bed succession (Elliot Formation; Stormberg Group) in southern Africa. The results from 10 partially overlapping sections, with a composite thickness of ~ 280 m, provide a magnetic polarity chronology of the main Karoo Basin in South Africa and Lesotho. Palaeomagnetic analyses reveal that heating samples to between 150 °C and ~ 300 °C removes the secondary, moderately inclined (~ 48°) normal-polarity component of remanent magnetization. This component overlaps with the present-day field and is comparable to the overprint direction expected from Lower Jurassic Karoo dolerite intrusions. In contrast, a likely primary, high unblocking temperature component, of dual polarity, consistently is of steeper inclination (~ 63°). This characteristic remanence passes the reversals test, except where means are based on small sample populations. There are only two resulting polarity zones for the ~ 200 m thick lower Elliot Formation (LEF) with potential for a thin 3rd magnetozone in the uppermost part. The upper Elliot Formation (UEF), in contrast, which was sampled over a thickness of ~ 80 m, has five polarity zones. The failure of the reversal test for the UEF and combined Elliot Formation (LEF + UEF) indicates that the normal polarity samples may be biased by a younger overprint of either the Jurassic normal polarity of the Karoo Large Igneous Province or present day field. The separate poles calculated for the four sites in the LEF and ten sites in the UEF overlap with the Late Triassic and Early to Middle Jurassic Gondwana poles, respectively. The combined Elliot Formation and UEF pole positions are better constrained than the LEF and therefore considered more reliable. Overall the LEF shows considerable overlap with the Late Triassic Apparent Polar Wander Paths (APWP) poles.

Original languageEnglish
Pages (from-to)177-192
Number of pages16
JournalGondwana Research
Publication statusPublished - Nov 2017


  • Early Jurassic
  • Elliot Formation
  • Karoo Basin
  • Late Triassic
  • Magnetic stratigraphy

ASJC Scopus subject areas

  • Geology


Dive into the research topics of 'Magnetostratigraphy across the Triassic-Jurassic boundary in the main Karoo Basin'. Together they form a unique fingerprint.

Cite this