@inproceedings{b001abeb935348e1a04dc90aac8e2a67,
title = "Load forecasting using statistical time series model in a medium voltage distribution network",
abstract = "In this paper, the suitability of statistical time series technique in the forecasting of load demand of a public hospital facility is tested. The hospital facility is supplied from a medium voltage distribution network. Historical data recorded over a period of three months are used for this purpose. The R-Studio package software is sourced to examine the shape of the time series pattern. The Box-Jenkins seasonal ARIMA model is subsequently applied in an attempt to forecast future series data and thereby predicting load demand pattern likely to be expected by the hospital facility. The suitability of this prediction technique is verified on the basis of the MAPE. Results show MAPE deviation of 3.91% from actual load data measured.",
keywords = "Auto-regressive integral moving average, Load forecasting, Mean absolute percentage error, Time series analysis",
author = "Hulisani Matsila and Pitshou Bokoro",
note = "Publisher Copyright: {\textcopyright} 2018 IEEE.; 44th Annual Conference of the IEEE Industrial Electronics Society, IECON 2018 ; Conference date: 20-10-2018 Through 23-10-2018",
year = "2018",
month = dec,
day = "26",
doi = "10.1109/IECON.2018.8592891",
language = "English",
series = "Proceedings: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "4974--4979",
booktitle = "Proceedings",
address = "United States",
}