Lipopolysaccharide perception in Arabidopsis thaliana: Diverse LPS chemotypes from Burkholderia cepacia, Pseudomonas syringae and Xanthomonas campestris trigger differential defence-related perturbations in the metabolome

Morena M. Tinte, Paul A. Steenkamp, Lizelle A. Piater, Ian A. Dubery

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Lipopolysaccharides (LPSs) are microbe-associated molecular pattern molecules (MAMPs) from Gram-negative bacterial pathogens that potentially contain three different MAMPs (the O-polysaccharide chain, the oligosaccharide core and lipid A). LPSs was purified from Burkholderia cepacia, Pseudomonas syringae and Xanthomonas campestris and electrophoretically profiled. Outcomes of the interactions of the three different LPS chemotypes with Arabidopsis thaliana, as reflected in the induced defence metabolites, profiled at 12 h and 24 h post elicitation, were investigated. Plants were pressure-infiltrated with LPS solutions and methanol-based extractions at different time points were performed for untargeted metabolomics using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Multivariate data modelling and chemometric analysis were applied to generate interpretable biochemical information from the multidimensional data sets. The three LPSs triggered differential metabolome changes in the plants as apparent from chromatographically distinct MS chromatograms. Unsupervised and supervised multivariate data models exhibited time- and treatment-related variations, and revealed discriminating metabolite variables. Heat map models comparatively displayed the up-regulated pathways affecting the metabolomes and Venn diagrams indicated up-regulated and shared metabolites among the three LPS treatments. The altered metabolomes reflect the up-regulation of metabolites from not only the glucosinolate pathway, but also from the shikimate-phenylpropanoid-flavonoid -, terpenoid - and indolic/alkaloid pathways, as well as oxygenated fatty acids. Distinct phytochemical profiles, especially at the earlier time point, suggest differences in the perception of the three LPS chemotypes, associated with the molecular patterns within the tripartite lipoglycans.

Original languageEnglish
Pages (from-to)267-277
Number of pages11
JournalPlant Physiology and Biochemistry
Volume156
DOIs
Publication statusPublished - Nov 2020

Keywords

  • Lipopolysaccharides
  • MAMP
  • Metabolome
  • Metabolomics
  • Pattern recognition

ASJC Scopus subject areas

  • Physiology
  • Genetics
  • Plant Science

Fingerprint

Dive into the research topics of 'Lipopolysaccharide perception in Arabidopsis thaliana: Diverse LPS chemotypes from Burkholderia cepacia, Pseudomonas syringae and Xanthomonas campestris trigger differential defence-related perturbations in the metabolome'. Together they form a unique fingerprint.

Cite this