Large-scale synthesis of CISe/ZnS core-shell quantum dots and its effects on the enzymatic activity of recombinant human furin (an activator of SARS-COV-2 S1/S2 spike proteins)

Vuyelwa Ncapayi, Oladoyin Famutimi, Thabang Calvin Lebepe, Rodney Maluleke, Sam Masha, Nande Mgedle, Sundararajan Parani, Tetsuya Kodama, Isaac Olusanjo Adewale, Oluwatobi Samuel Oluwafemi

Research output: Contribution to journalArticlepeer-review

Abstract

We herein report, for the first time, the activity of copper indium selenide/zinc sulphide core-shell quantum dots (CISe/ZnS QDs) as an inhibitor against recombinant human furin, an enzyme that has been implicated in the aetiology of many diseases, including Covid-19. The cell viability of the as-synthesised CISe/ZnS QDs was tested against mouse colon carcinoma cells (C26), while the Furin activity was measured by hydrolysis of peptide substrate Pyr-RTKR-AMC liberating the fluorogenic 7-amino-4-methyl coumarin. The result showed that the as-synthesised stable near-infrared emitting (840 nm) CISe-ZnS QDs is biocompatible against C26 and can inhibit furin with an inhibition constant, Ki, of 15.66 μM. The IC50 was 11.29 ± 0.54 μM, while the enzymatic activity was abolished at about 23 μM of the inhibitor concentration. The results indicate the chemotherapeutic potential of CISe-ZnS QDs as an enzyme inhibitor, which may find application in managing diseases whose pathogenesis involves hyperactivity of furin.

Original languageEnglish
Article number100737
JournalColloids and Interface Science Communications
Volume56
DOIs
Publication statusPublished - Sept 2023

Keywords

  • Enzyme inhibitor
  • Furin
  • Quantum dots

ASJC Scopus subject areas

  • Biotechnology
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Colloid and Surface Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Large-scale synthesis of CISe/ZnS core-shell quantum dots and its effects on the enzymatic activity of recombinant human furin (an activator of SARS-COV-2 S1/S2 spike proteins)'. Together they form a unique fingerprint.

Cite this