Abstract
This study aimed to investigate the kinetics of phenolic compound modification during the fermentation of maize flour at different times. Maize was spontaneously fermented into sourdough at varying times (24, 48, 72, 96, and 120 h) and, at each point, the pH, titratable acidity (TTA), total soluble solids (TSS), phenolic compounds (flavonoids such as apigenin, kaempferol, luteolin, quercetin, and taxifolin) and phenolic acids (caffeic, gallic, ferulic, p-coumaric, sinapic, and vanillic acids) were investigated. Three kinetic models (zero-, first-, and second-order equations) were used to determine the kinetics of phenolic modification during the fermentation. Results obtained showed that fermentation significantly reduced pH, with a corresponding increase in TTA and TSS. All the investigated flavonoids were significantly reduced after fermentation, while phenolic acids gradually increased during fermentation. Among the kinetic models adopted, first-order (R2 = 0.45–0.96) and zero-order (R2 = 0.20–0.82) equations best described the time-dependent modifications of free and bound flavonoids, respectively. On the other hand, first-order (R2 = 0.46–0.69) and second-order (R2 = 0.005–0.28) equations were best suited to explain the degradation of bound and free phenolic acids, respectively. This study shows that the modification of phenolic compounds during fermentation is compound-specific and that their rates of change may be largely dependent on their forms of existence in the fermented products.
Original language | English |
---|---|
Article number | 6702 |
Journal | Molecules |
Volume | 26 |
Issue number | 21 |
DOIs | |
Publication status | Published - 1 Nov 2021 |
Keywords
- First order
- Flavonoids
- Kinetic modelling
- Phenolic acids
- Zero order
ASJC Scopus subject areas
- Analytical Chemistry
- Chemistry (miscellaneous)
- Molecular Medicine
- Pharmaceutical Science
- Drug Discovery
- Physical and Theoretical Chemistry
- Organic Chemistry