Abstract
The superconducting properties of rhombohedral LaIr3 were examined using susceptibility, resistivity, heat capacity, and zero-field (ZF) and transverse-field (TF) muon spin relaxation and rotation (μSR) measurements. The susceptibility and resistivity measurements confirm a superconducting transition below Tc K. Two successive transitions are observed in the heat capacity data, one at Tc K and a second at 1.2 K below Tc. The heat capacity jump is ΔC/γTc 10, which is lower than 1.43 expected for Bardeen-Cooper-Schrieffer (BCS) weak-coupling limit. TF-μSR measurements reveal a fully gapped s-wave superconductivity with 2Δ(0)/kbTc=3.31(8), which is small compared to the BCS value of 3.56, suggesting weak-coupling superconductivity. The magnetic penetration depth, λl(0), estimated from TF-μSR gives λL(0)=386(3) nm, a superconducting carrier density ns=2.9(1)×1027 carriers m-3 and a carrier effective-mass enhancement factor m*=1.53(1)me. ZF-μSR data show no evidence for any spontaneous magnetic fields below Tc, which demonstrates that time-reversal symmetry is preserved in the superconducting state of LaIr3.
Original language | English |
---|---|
Article number | 065602 |
Journal | Journal of Physics Condensed Matter |
Volume | 32 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- D-band superconductivity
- Muon spin spectroscopy
- Superconducting gap structure
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics