TY - GEN
T1 - INVESTIGATION OF THE ACOUSTIC PERFORMANCE OF PLANTAIN (Musa Paradisiacal) FIBRE REINFORCED EPOXY BIOCOMPOSITE
AU - Imoisili, Patrick Ehi
AU - Nwanna Charles, E.
AU - Enebe George, C.
AU - Jen, Tien Chien
N1 - Publisher Copyright:
Copyright © 2022 by ASME.
PY - 2022
Y1 - 2022
N2 - Sound is produced by the fluctuation of oscillation waves caused by variations in pressure in a medium containing various frequency ranges, which can be detected by either an animal or a human auditory apparatus and then transferred to the brain for analysis. Noise can be diminished and controlled by using absorptive materials. This is necessary because noise has a negative effect on public health, sharing of knowledge, and serenity, and it is getting worse every day as a result of urbanization and increased affiliated functions. Utilization of natural and synthetic reinforced polymer composites in noise pollution control is an emerging area of research. Natural fibers could potentially replace synthetic fibre reinforced composites due to their low impact on human health and environmental friendliness, according to research. Though academics have been excited about studying their mechanical features, little attention has been paid to quantifying their sound reduction behaviours. Natural fibers, when interacting with a variety of sound frequency and intensity, the varied structures of sound absorbing materials, such as porous structure, hollow structure, multi-dimensional size and length structure, or solid composite materials, having their own distinctive sound absorbing capabilities. This study aims to develop and examine the void content, impact, hardness and acoustic properties of a natural fibre reinforced biocomposites. Natural fibre was extracted from plantain (Musa paradisiacal) fibre (PF), using the water retting method. Extracted fibre wasd used to prepare a fibre reinforced biocomposite using an epoxy resin as the matrix. Biocomposite with 5, 10, 15 and 20 (Wt. %) PF content were fabricated. Impact, hardness and void content analysis was conducted on prepared biocomposite in triplicate. Surface morphology of the fracture surface of prepared biocomposite was examine using a scanning electron microscope (SEM). Porosity and sound absorption coefficient properties of the fibre reinforced biocomposite were also investigated. Test analysis shows that impact, hardness and void content of the biocomposite, increases as PF content increases. Maximum hardness and impact strength were observed at 15 (w %). SEM analysis, shows the existence of cavities on the fracture surface, together with rough fibre surfaces that easily trap air, and this feature tends to boost the biocomposite's sound absorption qualities.The sound absorption coefficient shows improvement as fibre volume increases in the bio composite. Results suggest that of PF reinforced biocomposites could be less costly, feasible and ecologically superior alternatives to synthetic fibre composites for acoustic applications in areas like building architecture and automotive industries.
AB - Sound is produced by the fluctuation of oscillation waves caused by variations in pressure in a medium containing various frequency ranges, which can be detected by either an animal or a human auditory apparatus and then transferred to the brain for analysis. Noise can be diminished and controlled by using absorptive materials. This is necessary because noise has a negative effect on public health, sharing of knowledge, and serenity, and it is getting worse every day as a result of urbanization and increased affiliated functions. Utilization of natural and synthetic reinforced polymer composites in noise pollution control is an emerging area of research. Natural fibers could potentially replace synthetic fibre reinforced composites due to their low impact on human health and environmental friendliness, according to research. Though academics have been excited about studying their mechanical features, little attention has been paid to quantifying their sound reduction behaviours. Natural fibers, when interacting with a variety of sound frequency and intensity, the varied structures of sound absorbing materials, such as porous structure, hollow structure, multi-dimensional size and length structure, or solid composite materials, having their own distinctive sound absorbing capabilities. This study aims to develop and examine the void content, impact, hardness and acoustic properties of a natural fibre reinforced biocomposites. Natural fibre was extracted from plantain (Musa paradisiacal) fibre (PF), using the water retting method. Extracted fibre wasd used to prepare a fibre reinforced biocomposite using an epoxy resin as the matrix. Biocomposite with 5, 10, 15 and 20 (Wt. %) PF content were fabricated. Impact, hardness and void content analysis was conducted on prepared biocomposite in triplicate. Surface morphology of the fracture surface of prepared biocomposite was examine using a scanning electron microscope (SEM). Porosity and sound absorption coefficient properties of the fibre reinforced biocomposite were also investigated. Test analysis shows that impact, hardness and void content of the biocomposite, increases as PF content increases. Maximum hardness and impact strength were observed at 15 (w %). SEM analysis, shows the existence of cavities on the fracture surface, together with rough fibre surfaces that easily trap air, and this feature tends to boost the biocomposite's sound absorption qualities.The sound absorption coefficient shows improvement as fibre volume increases in the bio composite. Results suggest that of PF reinforced biocomposites could be less costly, feasible and ecologically superior alternatives to synthetic fibre composites for acoustic applications in areas like building architecture and automotive industries.
KW - Acoustic
KW - Biocomposite
KW - Epoxy
KW - Plantain Fibre
KW - Sound Absorption
UR - http://www.scopus.com/inward/record.url?scp=85148417976&partnerID=8YFLogxK
U2 - 10.1115/IMECE2022-94773
DO - 10.1115/IMECE2022-94773
M3 - Conference contribution
AN - SCOPUS:85148417976
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Advanced Materials
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022
Y2 - 30 October 2022 through 3 November 2022
ER -