TY - GEN
T1 - Investigating the purge flow rate in a reactor scale simulation of an atomic layer deposition process
AU - Nwanna, Emeka Charles
AU - Coetzee, Rigardt Alfred Maarten
AU - Jen, Tien Chien
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - This paper investigates the purge flow rate in a reactor scale simulation of an Atomic Layer Deposition (ALD) process. A three-dimensional numerical analysis approach was implemented in the ALD process to fabricate thin films of aluminium oxide (Al2O3). Despite the abundance of literature on the specific use of, and increase in deposited material through the process of ALD, limited studies exist on the physical and chemical processes that occur during the growth of ALD. Previous literature has indicated that purging has presented a major challenge in the effective deposition rate of the ALD process. The precise purge flow rate has also been greatly contended. The importance of the purge sequence within the ALD process cannot be overemphasized. The term purge sequence refers to the essential property that defines the ALD advanced nano-fabrication technique in producing ultra-thin film. Therefore, this study focused on the purge flow rate effects of the ALD process. The reactants employed in the simulation process were trimethyl-aluminium (TMA) and ozone (O3) as the metal and oxidant precursors, respectively, and inert argon as the purge gas. Numerical simulations were carried out at a stable operating pressure of 1 torr, with a substrate temperature of 200°C, and three purge flow rates of 20, 10 and 5 sccm, respectively. An extended ozone exposure is crucial to in providing an adequately oxidized substrate. It is discovered that the 5 sccm flow rate shows, superior mass fractions, unity surface coverage and a time extensive surface deposition rate. The 20 sccm, 10 sccm and 5 sccm purge flow rate growth obtained a 0.58, 0.92, and 1.6 Å/cycle, respectively. The findings revealed close similarities to experimental behaviours and recorded growth.
AB - This paper investigates the purge flow rate in a reactor scale simulation of an Atomic Layer Deposition (ALD) process. A three-dimensional numerical analysis approach was implemented in the ALD process to fabricate thin films of aluminium oxide (Al2O3). Despite the abundance of literature on the specific use of, and increase in deposited material through the process of ALD, limited studies exist on the physical and chemical processes that occur during the growth of ALD. Previous literature has indicated that purging has presented a major challenge in the effective deposition rate of the ALD process. The precise purge flow rate has also been greatly contended. The importance of the purge sequence within the ALD process cannot be overemphasized. The term purge sequence refers to the essential property that defines the ALD advanced nano-fabrication technique in producing ultra-thin film. Therefore, this study focused on the purge flow rate effects of the ALD process. The reactants employed in the simulation process were trimethyl-aluminium (TMA) and ozone (O3) as the metal and oxidant precursors, respectively, and inert argon as the purge gas. Numerical simulations were carried out at a stable operating pressure of 1 torr, with a substrate temperature of 200°C, and three purge flow rates of 20, 10 and 5 sccm, respectively. An extended ozone exposure is crucial to in providing an adequately oxidized substrate. It is discovered that the 5 sccm flow rate shows, superior mass fractions, unity surface coverage and a time extensive surface deposition rate. The 20 sccm, 10 sccm and 5 sccm purge flow rate growth obtained a 0.58, 0.92, and 1.6 Å/cycle, respectively. The findings revealed close similarities to experimental behaviours and recorded growth.
KW - Atomic layer deposition
KW - Deposition rate
KW - Nanotechnology
KW - Purge flow rate
KW - Thin film
UR - http://www.scopus.com/inward/record.url?scp=85078763046&partnerID=8YFLogxK
U2 - 10.1115/IMECE2019-10692
DO - 10.1115/IMECE2019-10692
M3 - Conference contribution
AN - SCOPUS:85078763046
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Advanced Manufacturing
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019
Y2 - 11 November 2019 through 14 November 2019
ER -