Abstract
Palladium-based catalysts serve as promising electrocatalysts for the oxidation of ethylene glycol to produce electrical energy that can be used to address the continuous worldwide energy demand increments along with the depletion of fossil fuels which serve as the main energy source. For optimal catalysts performance, carbon nanotubes and carbon nanodots were investigated as palladium catalyst support materials to address difficulties in oxidizing and breaking the C-C bonds in ethylene glycol, cost of electrocatalyst, and complex reaction mechanism that is restraining rapid development and applications of direct ethylene glycol fuel cells (DEGFC). Utilization of palladium catalysts supported on carbon nanotubes (CNT) and carbon nanodots (CND) as support materials resulted in spontaneous ethylene glycol oxidation. The Pd/CNT catalyst showed greater stability compared to Pd/CND during the oxidation of ethylene glycol, and it is not easily poisoned by carbon monoxide intermediates formed during ethylene glycol oxidation as shown by a slow current decay on chronoamperometry.
Original language | English |
---|---|
Article number | 015017 |
Journal | Materials Research Express |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2021 |
Keywords
- Alcohol electrooxidation
- Carbon nanodots
- Carbon nanotubes
- Electrocatalyst
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Surfaces, Coatings and Films
- Polymers and Plastics
- Metals and Alloys