Investigating the chemical stability and thermal functionality of DMPT promoted TiO2 nanoparticles on unsaturated polyester resin

M. G. Salemane, A. D. Baruwa, M. E. Makhatha

Research output: Contribution to journalArticlepeer-review

Abstract

The incessant emergence of failures in mining roofs, along with escalating demands for high and sustainable roof support products such as resin anchor bolt capsules (resin), necessitates strengthening these elements. This study explores the transformative influence of Titanium oxide nanoparticles (TiO2) and its concentration on the chemical properties, stability, and thermal performance of polyester resin (UPE) nanocomposites. The investigation was carried out using Fourier-transform infrared (FTIR), Raman spectroscopy, and X-ray diffraction (XRD). Rheological behavior was assessed with a Brookfield viscometer, while thermal stability was examined via thermogravimetric analysis (TGA, DTG, and DTA). From the results obtained, the addition of nanoparticle TiO2 yielded a little significant change in the shift of the FTIR wavelength. However, substantial Raman peak disappearance from the peaks of the UPE neat compared to composites. The shift in Raman is associated with an increase in crystallinity due to TiO2 content. X-ray diffraction confirms the seamless presence of anatase TiO2 nanoparticles in the polyester resin matrix. The resin curing kinetics exhibit a 50-s reduction in the time to reach the exothermic peak when the nanomaterial content reaches 3 % in TiO2. An increase in nanomaterial content leads to a shorter time to peak at a higher exothermic temperature, indicating improved resin cure rates. This study substantiates enhanced chemical and thermal stabilities with increasing nanomaterial content, affirming the positive impact of nanomaterial infusion on resin resilience and stability.

Original languageEnglish
Article number102116
JournalResults in Engineering
Volume22
DOIs
Publication statusPublished - Jun 2024

Keywords

  • Cure-rate
  • Nanocomposite
  • Nanomaterials
  • Rheology: thermal stability
  • Unsaturated polyester (UPE) resin

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Investigating the chemical stability and thermal functionality of DMPT promoted TiO2 nanoparticles on unsaturated polyester resin'. Together they form a unique fingerprint.

Cite this