Abstract
We prove that every surjective unital linear mapping which preserves invertible elements from a Banach algebra onto a C∗-algebra carrying a faithful tracial state is a Jordan homomorphism, thus generalising Aupetit’s 1998 result for finite von Neumann algebras.
Original language | English |
---|---|
Pages (from-to) | 113-120 |
Number of pages | 8 |
Journal | Studia Mathematica |
Volume | 272 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2023 |
Keywords
- C-algebras
- Jordan homomorphisms
- invertibility preserving mappings
- tracial states
ASJC Scopus subject areas
- General Mathematics