Invertibility preserving mappings onto finite C-algebras

Martin Mathieu, Francois Schulz

Research output: Contribution to journalArticlepeer-review

Abstract

We prove that every surjective unital linear mapping which preserves invertible elements from a Banach algebra onto a C-algebra carrying a faithful tracial state is a Jordan homomorphism, thus generalising Aupetit’s 1998 result for finite von Neumann algebras.

Original languageEnglish
Pages (from-to)113-120
Number of pages8
JournalStudia Mathematica
Volume272
Issue number1
DOIs
Publication statusPublished - 2023

Keywords

  • C-algebras
  • Jordan homomorphisms
  • invertibility preserving mappings
  • tracial states

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Invertibility preserving mappings onto finite C-algebras'. Together they form a unique fingerprint.

Cite this