Intraspecific mitochondrial gene variation can be as low as that of nuclear rRNA

Tshifhiwa G. Matumba, Jody Oliver, Nigel P. Barker, Christopher D. McQuaid, Peter R. Teske

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Background: Mitochondrial DNA (mtDNA) has long been used to date historical demographic events. The idea that it is useful for molecular dating rests on the premise that its evolution is neutral. Even though this idea has long been challenged, the evidence against clock-like evolution of mtDNA is often ignored. Here, we present a particularly clear and simple example to illustrate the implications of violations of the assumption of selective neutrality. Methods: DNA sequences were generated for the mtDNA COI gene and the nuclear 28S rRNA of two closely related rocky shore snails, and species-level variation was compared. Nuclear rRNA is not usually used to study intraspecific variation in species that are not spatially structured, presumably because this marker is assumed to evolve so slowly that it is more suitable for phylogenetics. Results: Even though high inter-specific divergence reflected the faster evolutionary rate of COI, intraspecific genetic variation was similar for both markers. As a result, estimates of population expansion times based on mismatch distributions differed between the two markers by millions of years. Conclusions: Assuming that 28S evolution is more clock-like, these findings can be explained by variation-reducing purifying selection in mtDNA at the species level, and an elevated divergence rate caused by diversifying selection between the two species. Although these two selective forces together make mtDNA suitable as a marker for species identifications by means of DNA barcoding because they create a 'barcoding gap', estimates of demographic change based on this marker can be expected to be highly unreliable. Our study contributes to the growing evidence that the utility of mtDNA sequence data beyond DNA barcoding is limited.

Original languageEnglish
Article number339
JournalF1000Research
Volume9
DOIs
Publication statusPublished - 2020

Keywords

  • Demographic history
  • Diversifying selection
  • Mismatch distribution
  • Molecular dating
  • Population expansion
  • Purifying selection

ASJC Scopus subject areas

  • General Biochemistry,Genetics and Molecular Biology
  • General Immunology and Microbiology
  • Pharmacology, Toxicology and Pharmaceutics (all)

Fingerprint

Dive into the research topics of 'Intraspecific mitochondrial gene variation can be as low as that of nuclear rRNA'. Together they form a unique fingerprint.

Cite this