Inspiratory aerodynamic valving in the avian lung: Functional morphology of the extrapulmonary primary bronchus

J. N. Maina, M. Africa

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)

Abstract

The form, geometry and epithelial morphology of the extrapulmonary primary bronchi (EPPB) of the domestic fowl (Gallus gallus var. domesticus) and the rock dove (Columba livia) were studied microscopically and by three-dimensional computer reconstruction to determine the structural features that may be involved in the rectification of the inspired air past the openings of the medioventral secondary bronchi (MVSB), i.e. the inspiratory aerodynamic valving (IAV). In both species, the EPPB were intercalated between the clavicular and the cranial thoracic air-sacs. A notable difference between the morphology of the EPPB in G. g. domesticus and C. livia was that, in the former, the EPPB were constricted at the origin of the MVSB, while a dilatation occurred at the same site in the latter. In both species, a highly vascularized, dorsally located hemispherical epithelial swelling was observed cranial to the origin of the MVSB. The MVSB were narrow at their origin and variably angled relative to the longitudinal axis of the EPPB. Conspicuous epithelial tracts and folds were observed on the luminal aspect of the EPPB in both C. livia and G. g. domesticus. From their marked development and their orientation relative to the angled MVSB, these properties may influence the flow of the air in the EPPB. It was concluded that features such as syringeal constriction, an intimate topographic relationship between the EPPB and the cranial air-sacs, prominent epithelial tracts and folds, an epithelial swelling ahead of the origin of the first MVSB (corresponding to the 'segmentun accelerans'), and narrowing and angulation of the MVSB at their origin, may together contribute to IAV to a variable extent. In as much as the mechanism of pulmonary ventilation and mode of airflow in the parabronchial lung are basically similar in all birds, the morphological differences observed between G. g. domesticus and C. livia suggest that either the mechanism of production of IAV or its functional efficiency may be different, at least in these two species of birds.

Original languageEnglish
Pages (from-to)2865-2876
Number of pages12
JournalJournal of Experimental Biology
Volume203
Issue number18
Publication statusPublished - 2000
Externally publishedYes

Keywords

  • Birds
  • Bronchus
  • Columba livia
  • Domestic fowl
  • Epithelial swelling
  • Gallus gallus domesticus
  • Lung
  • Rock dove
  • Segmentum accelerans

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Aquatic Science
  • Animal Science and Zoology
  • Molecular Biology
  • Insect Science

Fingerprint

Dive into the research topics of 'Inspiratory aerodynamic valving in the avian lung: Functional morphology of the extrapulmonary primary bronchus'. Together they form a unique fingerprint.

Cite this