In silico analysis of the polygalacturonase inhibiting protein 1 from apple, Malus domestica

Lerato Bt Matsaunyane, Dean Oelofse, Ian A. Dubery

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Background: The Malus domestica polygalacturonase inhibiting protein 1 (MdPGIP1) gene, encoding the M. domestica polygalacturonase inhibiting protein 1 (MdPGIP1), was isolated from the Granny Smith apple cultivar (GenBank accession no. DQ185063). The gene was used to transform tobacco and potato for enhanced resistance against fungal diseases. Findings: Analysis of the MdPGIP1 nucleotide sequence revealed that the gene comprises 993 nucleotides that encode a 330 amino acid polypeptide. In silico characterization of the MdPGIP1 polypeptide revealed domains typical of PGIP proteins, which include a 24 amino acid putative signal peptide, a potential cleavage site [Alanine-Leucine-Serine (ALS)] for the signal peptide, a 238 amino acid leucine-rich repeat (LRR) domain, a 46 amino acid N-terminal domain and a 22 amino acid C-terminal domain. The hydropathic evaluation of MdPGIP1 indicated a repetitive hydrophobic motif in the LRR domain and a hydrophilic surface area consistent with a globular protein. The typical consensus glycosylation sequence of Asn-X-Ser/Thr was identified in MdPGIP1, indicating potential N-linked glycosylation of MdPGIP1. The molecular mass of non-glycosylated MdPGIP1 was calculated as 36.615 kDa and the theoretical isoelectric point as 6.98. Furthermore, the secondary and tertiary structure of MdPGIP1 was modelled, and revealed that MdPGIP1 is a curved and elongated molecule that contains sheet B1, sheet B2 and 310-helices on its LRR domain. Conclusion: The overall properties of the MdPGIP1 protein is similar to that of the prototypical Phaseolus vulgaris PGIP 2 (PvPGIP2), and the detected differences supported its use in biotechnological applications as an inhibitor of targeted fungal polygalacturonases (PGs).

Original languageEnglish
Article number76
JournalBMC Research Notes
Issue number1
Publication statusPublished - 14 Dec 2015


  • Disease resistance
  • Inhibitor
  • PGIP, Polygalacturonase
  • Structure

ASJC Scopus subject areas

  • General Biochemistry,Genetics and Molecular Biology


Dive into the research topics of 'In silico analysis of the polygalacturonase inhibiting protein 1 from apple, Malus domestica'. Together they form a unique fingerprint.

Cite this