Abstract
In this work hydrothermally prepared magnetic iron oxide coated biochar nanocomposite (Fe3O4-BC), from raw avocado peel (raw AVP) and ferric chloride hexahydrate, effectively adsorbed aqueous methylene blue (MB) dye. Successful Fe3O4-BC formation was confirmed by TEM, FT-IR, XRD, and SEM. BET analyses measured a higher surface area (25.98 m2/g vs. 18.89 m2/g) and smaller-pore diameter (8.25 nm vs. 13.01 nm) for Fe3O4-BC compared to raw AVP. The Tempkin and Langmuir isotherm models successfully modeled the Fe3O4-BCMB adsorption equilibrium data, indicating uniform adsorption binding energy and homogeneous single layer adsorption. The maximum Langmuir adsorption capacity qmax = 62.1 mg/g for MB compared well with previously reported values for low cost carbonaceous adsorbents. The temporal experimental data was best represented by the pseudo-second order and two-phase pseudo-first-order kinetic models suggesting that chemisorption dominated. Thermal studies indicated spontaneous endothermic adsorption (ΔG < 0, ΔH > 0). Fe3O4-BCshowed remarkable stability and reusability during four consecutive adsorption–desorption cycles. Compared to literature, Fe3O4-BC adsorption was markedly faster requiring between 1 and 3 orders of magnitude less time to reach equilibrium. Consequently, a significantly lower treatment time would be required industrially which, coupled with magnetic separation, reusability, and relatively high adsorption capacity of the adsorbent, highlights the unprecedented industrial potential of Fe3O4-BC nanocomposite as an adsorbent for the treatment of MB polluted waters.
Original language | English |
---|---|
Article number | 100123 |
Journal | Materials Today Sustainability |
Volume | 18 |
DOIs | |
Publication status | Published - Jun 2022 |
Keywords
- Adsorption
- FeO-BC nanocomposite
- Isotherm models
- Kinetic models
- Methylene blue
- Thermodynamic studies
ASJC Scopus subject areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science