TY - JOUR
T1 - Hydrogenation of Carbon Dioxide to Formate by Noble Metal Catalysts Supported on a Chemically Stable Lanthanum Rod-Metal-Organic Framework
AU - Gumbo, Maureen
AU - Makhubela, Banothile C.E.
AU - Amombo Noa, Francoise M.
AU - Öhrström, Lars
AU - Al-Maythalony, Bassem
AU - Mehlana, Gift
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023/6/12
Y1 - 2023/6/12
N2 - The conversion of carbon dioxide to formate is of great importance for hydrogen storage as well as being a step to access an array of olefins. Herein, we have prepared a JMS-5 metal-organic framework (MOF) using a bipyridyl dicarboxylate linker, with the molecular formula [La2(bpdc)3/2(dmf)2(OAc)3]·dmf. The MOF was functionalized by cyclometalation using Pd(II), Pt(II), Ru(II), Rh(III), and Ir(III) complexes. All metal catalysts supported on JMS-5 showed activity for CO2 hydrogenation to formate, with Rh(III)@JMS-5a and Ir(III)@JMS-5a yielding 4319 and 5473 TON, respectively. X-ray photoelectron spectroscopy of the most active catalyst Ir(III)@JMS-5a revealed that the iridium binding energies shifted to lower values, consistent with formation of Ir-H active species during catalysis. The transmission electron microscopy images of the recovered catalysts of Ir(III)@JMS-5a and Rh(III)@JMS-5a did not show any nanoparticles. This suggests that the catalytic activity observed was due to Ir(III) and Rh(III). The high activity displayed by Ir(III)@JMS-5a and Rh(III)@JMS-5a compared to using the Ir(III) and Rh(III) complexes on their own is attributed to the stabilization of the Ir(III) and Rh(III) on the nitrogen and carbon atom of the MOF backbone.
AB - The conversion of carbon dioxide to formate is of great importance for hydrogen storage as well as being a step to access an array of olefins. Herein, we have prepared a JMS-5 metal-organic framework (MOF) using a bipyridyl dicarboxylate linker, with the molecular formula [La2(bpdc)3/2(dmf)2(OAc)3]·dmf. The MOF was functionalized by cyclometalation using Pd(II), Pt(II), Ru(II), Rh(III), and Ir(III) complexes. All metal catalysts supported on JMS-5 showed activity for CO2 hydrogenation to formate, with Rh(III)@JMS-5a and Ir(III)@JMS-5a yielding 4319 and 5473 TON, respectively. X-ray photoelectron spectroscopy of the most active catalyst Ir(III)@JMS-5a revealed that the iridium binding energies shifted to lower values, consistent with formation of Ir-H active species during catalysis. The transmission electron microscopy images of the recovered catalysts of Ir(III)@JMS-5a and Rh(III)@JMS-5a did not show any nanoparticles. This suggests that the catalytic activity observed was due to Ir(III) and Rh(III). The high activity displayed by Ir(III)@JMS-5a and Rh(III)@JMS-5a compared to using the Ir(III) and Rh(III) complexes on their own is attributed to the stabilization of the Ir(III) and Rh(III) on the nitrogen and carbon atom of the MOF backbone.
UR - http://www.scopus.com/inward/record.url?scp=85163383008&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.3c00884
DO - 10.1021/acs.inorgchem.3c00884
M3 - Article
C2 - 37256920
AN - SCOPUS:85163383008
SN - 0020-1669
VL - 62
SP - 9077
EP - 9088
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 23
ER -